Analysis of Precipitation Patterns and Extremes in European Lowlands

Author(s):  
Alexandra Berényi ◽  
Judit Bartholy ◽  
Rita Pongrácz

<p>It is well-known that climate change affects large scale weather patterns and local extremes all over the world as well as in Europe. These changes include the changes of precipitation occurences, amounts, and spatial patterns, which may require appropriate risk management actions. For this purpose, the first step is a thorough analysis of possible hazards associated to specific precipitation-related weather phenomena.</p><p>The primary goals of this study are (i) to examine the changes in precipitation patterns and extremes, and (ii) to explore the possible connections between changes in different lowlands across Europe. Precipitation time series are used from the E-OBS v.20 datasets on a 0.1° regular grid. Datasets are based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. Altogether 14 plain regions are selected in this study to represent different parts within Europe. More specifically, five plain regions are parts of the East European Plain, two regions are located in the Scandinavian basin, five regions are located in Western Europe, and the Pannonian Plain (including mostly Hungary) is also selected. For choosing the plains and their spatial representations, objective criteria are used, namely, the elevation remains under 200 m throughout the defined area and difference between the neighbouring gridpoints within the plain region does not exceed 40 m. Daily precipitation times series are analyzed and compared for these plain regions using various statistical tools. The results represent annual and seasonal changes in average and extreme precipitation amount as well as in the frequency of precipitation occurences. Climate indices and the occurence of extreme weather conditions including wet and dry spells are also analyzed.</p><p> </p>

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


2021 ◽  
Author(s):  
Svetlana Sycheva ◽  
Manfred Frechen ◽  
Birgit Terhorst ◽  
Sergey Sedov ◽  
Olga Khokhlova

<p>A detailed pedocryostratigraphic scheme of the Late Pleistocene periglacial region of the East European Plain has been developed on the basis of study of the paleorelief, sediments, paleosols, and cryogenic horizons. OSL and <sup>14</sup>C-dating of paleosols and sediments in Aleksandrov quarry and in other sections made it possible to substantiate this scheme and correlate it with analogous ones for different regions of Europe. The loess-paleosol sequence in Aleksandrov quarry (51º05'N, 36º08'E) does not have an analogous with respect to the completeness in the whole East European Plain. In the filling of paleobalka the Ryshkovo paleosol of the Mikulino interglacial (MIS 5e) is observed. Over this paleosol, the Valdai soil-sediment series (MIS 5d – MIS 2) is located. It includes four interstadial soils, two of them of the Early Valdai (Kukuevo and Streletsk ones), and two, sometimes three, of the Middle Valdai (Aleksandrov, Hydrouzel и Bryansk ones). The OSL date, 127 ± 8 ka BP, (beginning of MIS 5e) was obtained for a sample taken from the bottom of the Ryshkovo soil. The interglacial soil is overlain by the Seym layer formed mainly from destroyed and redeposited horizons of this soil. For the upper part of the Seym layer, OSL dates of 115 ± 7 ka BP and 112 ± 20 ka BP were obtained (MIS 5d). But the process of burial of Ryshkovo soil in the bottom of the paleobalka began at the end of the interglacial after a catastrophic forest fire. Large post-permafrost deformations - pseudomorphosis is confined to Selikhovodvor loess - MIS 4 (65 ± 8 ka BP). Two soils occurring between Seym and Selikhovodvor loesses: Kukuevo and Streletsk - Early Valdai (MIS 5c and MIS 5a). For Mlodat loess which separates those two soils (MIS 5b), OSL dates of 91 ± 1 and 89 ± 7 ka BP were obtained. For paleosols of Middle Valdai (MIS 3), <sup>14</sup>C-dates were obtained: Aleksandrov (53.742 - 2.124 ka cal BP) and Bryansk soils (37.618 ± 0.668 ka cal BP). For Tuskar loess, which separates Alexandrov and Bryansk soils, OSL dates of 50 ± 3 and 51 ± 3 ka BP were obtained. The new stratigraphic scheme of Late Pleistocene agrees with the ideas of researchers from Eastern, Central, and Western Europe , which allows the following correlations. The identified paleosols correspond to the following intervals: Ryshkovo – Eemian interglacial (127-117 ka BP); Kukuevo to Amersfoort + Brørup – Saint-Germain 1 (105-95 ka BP); Streletsk – Odderade to Saint-Germain 2 (about 85-75 ka BP); Aleksandrov to Oerel (56-53 ka BP); Hydrouzel to Moershoofd – Poperinge (44-45 ka BP) and Hengelo (40-38 ka BP); and Bryansk (33-27 ka BP) to Stillfried B, Denekamp or Grand Bois interstadials. The reconstructed Late Pleistocene loess-paleosol sequence has the most similar structure with loess-paleosol sequences of Ukraine, with sequence Dolní Věstonice in Moravia (Czech Republik), Stillfried in Austria and Mainz-Weisenau in the Rhenish area (Germany), and other archives. <strong>This work was supported by RFBR, grant N19-29-05024 mk. </strong></p>


2020 ◽  
Vol 163 ◽  
pp. 02004
Author(s):  
Maxim Kharlamov ◽  
Maria Kireeva

Drought is one of the most dangerous natural hazards that has a huge impact on the economy and population in the world and in Russia as well. A large number of studies speak of an increase in the number of droughts and low flow conditions, including Russia. In this work, an analysis was made of the conditions for droughts in the East European Plain over the past 38 years based on the data from the ERA-5 reanalysis. The atmospheric precipitation, air temperature over the seasons and the Palmer index (as a general indicator) for the study area were analyzed. Much attention was paid to the characteristics of the winter period, since the supposedly mild winters create favorable conditions for the formation of droughts in the summer period. It was found that the main factors affecting the drought formation of 2007-2018 was the lack of summer rainfall, and the remaining factors played a “preparatory” role in the process of the formation of large-scale drought.


2019 ◽  
Vol 70 (3) ◽  
pp. 198-210
Author(s):  
Nikolay Khitrov ◽  
Maria Smirnova ◽  
Nikolai Lozbenev ◽  
Ekaterina Levchenko ◽  
Vasiliy Gribov ◽  
...  

Abstract The soil cover of the forest-steppe and steppe zones of the East European Plain is characterized by diverse soil combinations revealed during large-scale and detailed soil mapping against the background of a traditional zonal sequence of dominant automorphic soils alternating from the north to the south and clearly displayed on small-scale soil maps. The composition, configuration and functioning of particular soil cover patterns are determined by the soil forming factors acting within a given area. The elementary soil areas (detailed scale) and elementary soil cover patterns maps (large scale) of the Central Russian, Kalach, and Volga Uplands are created by both traditional and digital soil mapping methods. Low-contrasting soil combinations with the background Haplic Chernozems (Loamic or Clayic, Pachic) alternating with zooturbated Haplic Chernozems (Loamic or Clayic, Pachic) on convex elements of the microtopography and Luvic Chernozems (Loamic or Clayic, Pachic) on concave elements of the microtopography prevails under conditions of thick clay loamy parent materials and free drainage. Under conditions of shallow embedding by low-permeable clayey sediments, the soil cover includes Chernozems or Chernic Phaeozems with stagnic features in some part of the soil profile or even Mollic Stagnosols. The presence of shrink-swell clays of different ages leads to the formation of Bathyvertic Chernozems, Vertic Chernozems, Vertic Chernic Phaeozems and/or Pellic Vertisols. The presence of soluble salts in the parent material leads to the development of solonetzic soil complexes consisting of Protosodic or Sodic Chernozems and different types of Solonetzes.


Author(s):  
Lehti Saag ◽  
Sergey V. Vasilyev ◽  
Liivi Varul ◽  
Natalia V. Kosorukova ◽  
Dmitri V. Gerasimov ◽  
...  

AbstractTransition from the Stone to the Bronze Age in Central and Western Europe was a period of major population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide sequence data from 28 individuals from the territory north of this source area – from the under-studied Western part of present-day Russia, including Stone Age hunter-gatherers (10,800–4,250 cal BC) and Bronze Age farmers from the Corded Ware complex called Fatyanovo Culture (2,900–2,050 cal BC). We show that Eastern hunter-gatherer ancestry was present in Northwestern Russia already from around 10,000 BC. Furthermore, we see a clear change in ancestry with the arrival of farming – the Fatyanovo Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe and European early farmer ancestry and thus likely originating from a fast migration towards the northeast from somewhere in the vicinity of modern-day Ukraine, which is the closest area where these ancestries coexisted from around 3,000 BC.


2017 ◽  
Vol 56 (2) ◽  
pp. 371-390 ◽  
Author(s):  
Ram P. Regmi ◽  
Toshihiro Kitada ◽  
Jimy Dudhia ◽  
Sangeeta Maharjan

AbstractNepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.


2020 ◽  
Author(s):  
Pedro Herrera-Lormendez ◽  
Nikolaos Mastrantonas ◽  
Jörg Matschullat ◽  
Hervé Douville

<p>Circulation classifications are a simple tool given their ability to portray aspects of day-to-day weather. As we start facing a dynamical response in general circulation patterns due to anthropogenic global warming, circulation changes can enhance or mitigate regional and local behaviour of extreme weather events.</p> <p>A weather type (WT) automatic classification, developed by Jenkinson-Collison (JC), is used to evaluate past and future changes in the seasonal frequencies of synoptic weather patterns over central and western Europe. A set of three reanalyses and four Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) are used, based on daily Sea Level Pressure (SLP) data.</p> <p>Discrepancies are found in the model outputs as they fall short of capturing interannual variabilities when compared to the reanalyses. Cyclonic and westerly circulations tend to be overestimated, whereas anticyclonics are underestimated.</p> <p>The projected frequencies, based on the Shared Socioeconomic Pathway 5 (SSP5) experiment, suggest significant increasing trends for unclassified WT (characterized by weak pressure gradients) during their summer half-year persistency for the coming 21<sup>st</sup> century. Winter trends indicate a surge in westerlies and a reduction in the events of cyclonic circulations and easterly flows. The results of this study support evidence of emergent changes in the occurrence of major synoptic configurations over Europe.</p>


2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

Abstract. Detecting trends in regional large-scale circulation (LSC) is an important challenge as LSC is a key driver of local weather conditions. In this work, we investigate the past evolution of Western Europe LSC based on the 500 hPa geopotential height fields from 20CRv2c (1851–2010), ERA20C (1900–2010) and ERA5 (1950–2010) reanalyses. We focus on the evolution of large-scale circulation characteristics using three atmospheric descriptors that are based on analogy – characterizing the geopotential shape stationarity and how well a geopotential shape is reproduced in the climatology – together with a non-analogy descriptor accounting for the intensity of the centers of action. These descriptors were shown relevant to study precipitation extremes and variability in the Northwestern Alps in previous studies. Even though LSC characteristics and trends are consistent among the three reanalyses after 1950, we find major differences between 20CRv2c and ERA20C from 1900 to 1950 in accordance with previous studies. Notably, ERA20C produces flatter geopotential shapes in the beginning of the 20th century and shows a reinforcement of the meridional pressure gradient that is not observed in 20CRv2c. We then focus on the recent changes in LSC from 1950 to 2019 using ERA5. We combine the four atmospheric descriptors with an existing weather pattern classification to study the recent changes in the main atmospheric influences over France and Western Europe (Atlantic, Mediterranean, Northeast, Anticyclonic). We show that little changes are found in Northeast circulations. However, we show that Atlantic circulations (zonal flows) tend to become more similar to known Atlantic circulations in winter. Anticyclonic conditions tend to become more stationary in summer – a change that can potentially affect summer heatwaves. Furthermore, Mediterranean circulations tend to become more stationary, more similar to known Mediterranean circulations and associated with stronger centers of action in autumn, which could have implications for autumn extreme precipitation in the Mediterranean-influenced regions of the Southwestern Alps.


Sign in / Sign up

Export Citation Format

Share Document