scholarly journals Large-Scale Gravity Current over the Middle Hills of the Nepal Himalaya: Implications for Aircraft Accidents

2017 ◽  
Vol 56 (2) ◽  
pp. 371-390 ◽  
Author(s):  
Ram P. Regmi ◽  
Toshihiro Kitada ◽  
Jimy Dudhia ◽  
Sangeeta Maharjan

AbstractNepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.

2015 ◽  
Vol 20 (1) ◽  
pp. 102-106
Author(s):  
Ram P. Regmi

Late wintertime diurnal variation and spatial distribution of mountain wave excitations over the Mt. Devchuli range and its surrounding areas have been numerically simulated with the application of Weather Research and Forecasting (WRF) Modeling System. The study reveals that the region holds low-level trapped mountain waves almost all the time. The waves are confined below the stratified layer at about 3km above the mean sea level. Wave excitation over the region is highly active during the afternoon time whereas it remains at minimum level during the late morning time. These waves pose significant risk for low-level aviation and parachuting activities.Journal of Institute of Science and Technology, 2015, 20(1): 102-106


2020 ◽  
Author(s):  
Alexandra Berényi ◽  
Judit Bartholy ◽  
Rita Pongrácz

<p>It is well-known that climate change affects large scale weather patterns and local extremes all over the world as well as in Europe. These changes include the changes of precipitation occurences, amounts, and spatial patterns, which may require appropriate risk management actions. For this purpose, the first step is a thorough analysis of possible hazards associated to specific precipitation-related weather phenomena.</p><p>The primary goals of this study are (i) to examine the changes in precipitation patterns and extremes, and (ii) to explore the possible connections between changes in different lowlands across Europe. Precipitation time series are used from the E-OBS v.20 datasets on a 0.1° regular grid. Datasets are based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. Altogether 14 plain regions are selected in this study to represent different parts within Europe. More specifically, five plain regions are parts of the East European Plain, two regions are located in the Scandinavian basin, five regions are located in Western Europe, and the Pannonian Plain (including mostly Hungary) is also selected. For choosing the plains and their spatial representations, objective criteria are used, namely, the elevation remains under 200 m throughout the defined area and difference between the neighbouring gridpoints within the plain region does not exceed 40 m. Daily precipitation times series are analyzed and compared for these plain regions using various statistical tools. The results represent annual and seasonal changes in average and extreme precipitation amount as well as in the frequency of precipitation occurences. Climate indices and the occurence of extreme weather conditions including wet and dry spells are also analyzed.</p><p> </p>


2019 ◽  
Vol 13 (1) ◽  
pp. 13-28 ◽  
Author(s):  
DeVondria D. Reynolds ◽  
Anthony R. Lupo ◽  
Andrew D. Jensen ◽  
Patrick S. Market

Introduction: Some weather extremes are the result of atmospheric blocking, which can be responsible for the stagnation of weather patterns. These large-scale quasi-stationary mid-latitude flow regimes can result in significant temperature and precipitation anomalies over the regions that the blocking event impacts or in the upstream and downstream regions. Methods: The ability to predict periods of anomalous weather conditions due to atmospheric blocking is a major problem for medium-range forecasting. Analyzing the National Centers for Environmental Prediction (NCEP) Ensemble 500-hPa pressure level heights (240 hrs.) ten-day forecasts, and using the University of Missouri blocking archive to identify blocking events, the forecasted onset, duration, and intensity of model blocking events are compared to observed blocks. Results and Discussion: The observed blocking events were identified using the University of Missouri blocking archive. Comparing these differences using four Northern Hemisphere case studies occurring over a one-year period across the Northern Hemisphere has shown the continued need for improvement in the duration and intensity of blocking events. Additionally, a comparison of the block intensity to a diagnostic known as the Integrated Regional Enstrophy (IRE) was performed in order to determine if there is a correlation between IRE and these quantities. Conclusion: Having a better understanding of block persistence and their associated anomalies can help society prepare for the damage they can cause.


2021 ◽  
Vol 34 (3) ◽  
pp. 883-899
Author(s):  
Danielle G. Udy ◽  
Tessa R. Vance ◽  
Anthony S. Kiem ◽  
Neil J. Holbrook ◽  
Mark A. J. Curran

AbstractWeather systems in the southern Indian Ocean (SIO) drive synoptic-scale precipitation variability in East Antarctica and southern Australia. Improved understanding of these dynamical linkages is beneficial to diagnose long-term climate changes from climate proxy records as well as informing regional weather and climate forecasts. Self-organizing maps (SOMs) are used to group daily 500-hPa geopotential height (z500; ERA-Interim) anomalies into nine regional synoptic types based on their dominant patterns over the SIO (30°–75°S, 40°–180°E) from January 1979 to October 2018. The pattern anomalies represented include four meridional, three mixed meridional–zonal, one zonal, and one transitional node. The frequency of the meridional nodes shows limited association with the phase of the southern annular mode (SAM), especially during September–November. The zonal and mixed patterns were nevertheless strongly and significantly correlated with SAM, although the regional synoptic representation of SAM+ conditions was not zonally symmetric and was represented by three separate nodes. We recommend consideration of how different synoptic conditions vary the atmospheric representation of SAM+ in any given season in the SIO. These different types of SAM+ mean a hemispheric index fails to capture the regional variability in surface weather conditions that is primarily driven by the synoptic variability rather than the absolute polarity of the SAM.


2021 ◽  
Author(s):  
Peter Hoffmann

<p>Persistence or sequences of critical weather patterns over Europe can trigger seasonally extreme hydroclimatic conditions in certain regions. In order to better estimate return periods of extremes across Europe, existing time series of sequences of weather-types over Europe were used to train monthly rules for the transition from one situation to another and their duration behaviour. This can be efficiently realized and tested by setting up decision trees and generating up to 10,000 year time series of weather-type sequences.</p><p>In an experiment carried out, large-scale weather situation types according to Hess/Brezowsky available from 1961 to 2020 were divided into two time periods and rules for the transition were derived for both by training decision trees. Based on the trained rules of transistions for the periods 1961-1990 and 1991-2020, 10,000-year weather-type sequences were then generated and analysed.</p><p>The comparison of the probability density functions of persistence for the 30 different large-scale weather situation types show that omega-like circultion patterns over Europe have a higher tendency to persist in the present time period. In connection with this, the risks of prolonged dry phases in Central Europe have increased. For the translation of different weather-types into local weather-type characteristics, long-term monthly mean daily precipitation values per weather-type was assigned from ERA5 reanalysis data and rearranged in a post-processing step according to the generated weather-type sequences. The analysis of the maximum duration of consecutive dry and wet months in Europe was the main focus and the identified long-term changes in hydroclimatic quantities can be thus exclusively attributed to dynamic factors.</p>


2017 ◽  
Author(s):  
◽  
Devondria D. Reynolds

Some weather extremes can be the result of atmospheric blocking. Like atmospheric patterns that tend to repeat themselves, atmospheric blocking leads to the stagnation of weather patterns. This repetition can last for several days to weeks. These large-scale quasi-stationary mid-latitude flow regimes can result in significant temperature and precipitation anomalies in the regions that the blocking event impacts. Being able to predict periods of anomalous weather conditions due to atmospheric blocking is a major problem for medium-range forecasting. Analyzing the NCEP Ensemble 500-mb pressure heights (240 hrs.) ten-day forecasts and using the University of Missouri blocking archive to identify blocking event, the duration of blocks, intensity prediction in comparison to observed blocks. Comparing these differences over a oneyear period across the Northern Hemisphere has shown the possibility for improved predictability of these blocks and their intensity. Having a better understanding of knowing how long each block will last and their associated anomalies can help society prepare for the damage they can cause. Knowing how to correctly identify blocks is important in improving forecast issues. Lastly, it is demonstrated that the Integrated Regional Enstrophy (IRE) for these events correlates with a block intensity index (BI).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Slobodan Nickovic ◽  
Bojan Cvetkovic ◽  
Slavko Petković ◽  
Vassilis Amiridis ◽  
Goran Pejanović ◽  
...  

AbstractIce particles in high-altitude cold clouds can obstruct aircraft functioning. Over the last 20 years, there have been more than 150 recorded cases with engine power-loss and damage caused by tiny cloud ice crystals, which are difficult to detect with aircraft radars. Herein, we examine two aircraft accidents for which icing linked to convective weather conditions has been officially reported as the most likely reason for catastrophic consequences. We analyze whether desert mineral dust, known to be very efficient ice nuclei and present along both aircraft routes, could further augment the icing process. Using numerical simulations performed by a coupled atmosphere-dust model with an included parameterization for ice nucleation triggered by dust aerosols, we show that the predicted ice particle number sharply increases at approximate locations and times of accidents where desert dust was brought by convective circulation to the upper troposphere. We propose a new icing parameter which, unlike existing icing indices, for the first time includes in its calculation the predicted dust concentration. This study opens up the opportunity to use integrated atmospheric-dust forecasts as warnings for ice formation enhanced by mineral dust presence.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1407
Author(s):  
Courtney A. Weber

Annual plasticulture production of strawberries promises superior weed control, fruit quality and yields. However, strawberry varieties adapted for perennial, matted-row production and local markets in cold climate regions have not been widely tested for adaptation to an annual production cycle. Productivity of seven short-day varieties developed for matted-row and/or annual production was examined in an annual plasticulture system in two consecutive trials in central NY (lat. 42.87° N, long. 76.99° W) harvested in 2013 and 2014. ‘Flavorfest’ demonstrated good performance in Trial 1 with high yield (390 g/plant) and large fruit size (13.9 g mean berry weight). ‘Jewel’ was shown to be well adapted to the annual plasticulture system with consistently high yields (330 and 390 g/plant) that equaled or surpassed other varieties and had moderate fruit size. ‘Chandler’ performed similarly to previous trials conducted in warmer regions with yield (340 g/plant) and fruit size (9.8 g mean berry weight) similar to ‘Jewel’. ‘Clancy’ yielded less but was consistent from year to year. The late season varieties Seneca and Ovation showed marked variability between years, possibly due to drastically different temperatures during flowering and fruit development in Trial 1 compared to Trial 2. High temperatures in Trial 1 likely caused higher early fruit yield, a compressed season and a precipitous decline in fruit size in the later season, thus reducing yield in the late season. Survival after a second dormant period was poor resulting in a small second harvest and reduced fruit size. Overall, the system demonstrated many of the expected benefits but may be more sensitive to weather conditions in the region. While many varieties developed for matted-row production may work well in an annual plasticulture system, not all varieties are equally adapted. Performance of each variety should be determined independently before large scale adoption by growers.


Author(s):  
Jennifer Francis ◽  
Natasa Skific

The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification—the enhanced sensitivity of high-latitude temperature to global warming—in only the last 10–20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming—and resulting weakening of the poleward temperature gradient—is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.


Sign in / Sign up

Export Citation Format

Share Document