Predicting heliospheric propagation of CMEs with probabilistic Drag-Based Ensemble Model (DBEM)

Author(s):  
Jaša Čalogović ◽  
Mateja Dumbović ◽  
Bojan Vršnak ◽  
Davor Sudar ◽  
Manuela Temmer ◽  
...  

<p><span>Understanding space weather driven by the solar activity is crucial as it can affect various human technologies, health as well as it can have important implications for the space environment near the Earth and the Earth’s atmosphere. In order to better asses space weather forecasts various empirical, drag-based and MHD models have been developed to predict the arrival time of CMEs. One of them is the analytical Drag-based Model (DBM) applying the equation of CME motion which is determined by the drag force from the background solar wind acting on the CME. DBM predictions depend on various initial parameters such as CME launch speed, background solar wind speed and empirically derived drag parameter as well CME’s angular half-width and longitude of CME source region for a DBM CME cone geometry. Since many of input parameters may be inaccurate or unreliable due to limited observations, the Drag-Based Ensemble Model (DBEM) was developed that considers the variability of model input parameters by making an ensemble of a number of different input parameters to calculate a distribution and significance of DBM results. DBM has the advantage of having very short computational time (< 0.01s) and DBEM ensemble runs with many thousand members can be performed within few seconds on a normal computer. Using such approach, DBEM can determine the most likely CME arrival times and speeds, quantify the prediction uncertainties and calculate the forecast confidence intervals. Recently, DBEM web interface was also integrated as one of the ESA Space Situational Awareness web portal space weather services (http://swe.ssa.esa.int/heliospheric-weather). We’ll present the recent DBEM developments together with the validation of its predictions using observations and other models as well as the input parameter sensitivity tests.</span></p>

2021 ◽  
Author(s):  
Jasa Calogovic ◽  
Mateja Dumbović ◽  
Davor Sudar ◽  
Bojan Vršnak ◽  
Karmen Martinić ◽  
...  

<p><span>The Drag-based Model (DBM) is an analytical model for heliospheric propagation of Coronal Mass Ejections (CMEs) that predicts the CME arrival time and speed at Earth or any other given target in the solar system. It is based on the equation of motion and depends on initial CME parameters, background solar wind speed, w and the drag parameter γ. A very short computational time of DBM (< 0.01s) allowed us to develop the Drag-Based Ensemble Model (DBEM) that considers the variability of model input parameters by making an ensemble of n different input parameters to calculate the distribution and significance of the DBM results. Using such an approach, we apply DBEM to determine the most likely CME arrival times and speeds, quantify the prediction uncertainties and calculate the confidence intervals. Recently, a new DBEMv3 version was developed including the various improvements and Graduated Cylindrical Shell (GCS) option for the CME geometry input as well as the CME propagation visualizations. Thus, we compare the DBEMv3 with previous DBEM versions (e.g. DBEMv2), evaluate it and determine the DBEMv3 performance and errors by using various CME-ICME lists. Compared to the previous versions, the DBEMv3 provides very similar results for all calculated output parameters with slight improvement in the performance. Based on the evaluation performed for 146 CME-ICME pairs, the DBEMv3 performance with mean error (ME) of -11.3 h, mean absolute error (MAE) of 17.3 h was obtained, similar to previous DBM and DBEM evaluations. Fully operational DBEMv3 web application was integrated as one of the ESA Space Situational Awareness portal services (https://swe.ssa.esa.int/current-space-weather) providing an important tool for space weather forecasters.</span></p>


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter focuses on the link between Sun and Earth generically known as space weather. This link is referred to as the occurrence in the solar corona of energetic phenomenon such as flares and coronal mass ejections which can have a major impact on the Earth's space environment. There were other discoveries in subsequent years, but the 1950s and 1960s brought major advances in the understanding of the connection between the Sun and the Earth. Satellite observations confirmed the existence of the solar wind, so that the nature of the interplanetary medium was identified and measured. Such continuous monitoring of the Sun and solar wind has, in turn, led to methods for predicting deleterious space weather.


2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2019 ◽  
Vol 9 ◽  
pp. A24
Author(s):  
Nicholas Achilleos ◽  
Patrick Guio ◽  
Nicolas André ◽  
Arianna M. Sorba

Theoretical models play an important role in the Planetary Space Weather Services (PSWS) of the European Planetary Network (“Europlanet”), due to their ability to predict the physical response of magnetospheric environments to compressions or rarefactions in the upstream solar wind flow. We illustrate this aspect by presenting examples of some calculations done with the UCL Magnetodisc Model in both “Jupiter” and “Saturn” mode. Similar model outputs can now be provided via the PSWS MAGNETODISC service. For each planet’s space environment, we present example model outputs showing the effect of compressions and rarefactions on the global magnetic field, plasma pressure and azimuthal current density. As a simple illustration of the physics underlying these reference models, we quantify solar wind effects by comparing the “compressed” and “expanded” outputs to a nominal “average-state” model, reflecting more typical solar wind dynamic pressures. We also describe the implementation of the corresponding PSWS MAGNETODISC Service, through which similar outputs may be obtained by potential users.


2009 ◽  
Vol 27 (5) ◽  
pp. 2057-2076 ◽  
Author(s):  
G. Facskó ◽  
Z. Németh ◽  
G. Erdős ◽  
A. Kis ◽  
I. Dandouras

Abstract. Hot flow anomalies (HFAs) are studied using observations of the magnetometer and the plasma instrument aboard the four Cluster spacecraft. We study several specific features of tangential discontinuities on the basis of Cluster measurements from the time periods of February–April 2003, December 2005–April 2006 and January–April 2007, when the separation distance of spacecraft was large. The previously discovered condition (Facskó et al., 2008) for forming HFAs is confirmed, i.e. that the solar wind speed and fast magnetosonic Mach number values are higher than average. Furthermore, this constraint is independent of the Schwartz et al. (2000)’s condition for HFA formation. The existence of this new condition is confirmed by simultaneous ACE magnetic field and solar wind plasma observations at the L1 point, at 1.4 million km distance from the Earth. The temperature, particle density and pressure parameters observed at the time of HFA formation are also studied and compared to average values of the solar wind plasma. The size of the region affected by the HFA was estimated by using two different methods. We found that the size is mainly influenced by the magnetic shear and the angle between the discontinuity normal and the Sun-Earth direction. The size grows with the shear and (up to a certain point) with the angle as well. After that point it starts decreasing. The results are compared with the outcome of recent hybrid simulations.


2020 ◽  
Author(s):  
Gianluca Napoletano ◽  
Raffaello Foldes ◽  
Dario Del Moro ◽  
Francesco Berrilli ◽  
Luca Giovannelli ◽  
...  

<p>ICME (Interplanetary Coronal Mass Ejection) are violent phenomena of solar activity that affect the whole heliosphere and the prediction of their impact on different solar system bodies is one of the primary goals of the planetary space weather forecasting. The travel time of an ICME from the Sun to the Earth can be computed through the Drag-Based Model (DBM), which is based on a simple equation of motion for the ICME defining its acceleration as a=-Γ(v-w)v-w, where a and v are the CME acceleration and speed, w is the ambient solar-wind speed and Γ is the so-called drag parameter (Vršnak et al., 2013).<br>In this framework, Γ depends on the ICME mass and cross-section, on the solar-wind density and, to a lesser degree, on other parameters. The typical working hypothesis for DBM implies that both Γ and w are constant far from the Sun. To run the codes, forecasters use empirical<br>input values for Γ and w, derived by pre-existent knowledge of solar-wind condition and by solving the “inverted problem” (where the ICME travel time is known and the unknowns are Γ and/or w). In<br>the 'Ensemble' approaches (Dumbovich et al., 2018; Napoletano et al. 2018), the uncertainty about the actual values of such inputs are rendered by Probability Distribution Functions (PDFs), accounting for the values variability and our lack of knowledge. Among those PDFs, that of Γ is poorly defined due to the relatively scarce statistics of recorded values. </p><p>Employing a list of past ICME events, for which initial conditions when leaving the Sun and arrival conditions at the Earth are known, we employ a statistical approach to the Drag-Based Model to determine a measure of Γ and w for each case. This allows to obtain distributions for the model parameters on experimental basis and, more importantly, to test whether different conditions of relative velocity to the solar wind influence the value of the drag efficiency, as it must be expected for solid objects moving into an external fluid. In addition, we perform numerical simulations of a solid ICME-shaped structure moving into the solar-wind modelled as an external fluid. Outcomes from these simulations are compared with our experimental results, and thus employed to interpret them on physical basis.</p>


2012 ◽  
Vol 8 (S294) ◽  
pp. 487-488
Author(s):  
Li-Jia Liu ◽  
Bo Peng

AbstractThe Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.


2021 ◽  
Author(s):  
Samantha Wallace ◽  
Nicholeen M. Viall ◽  
Charles N. Arge

<p>Solar wind formation can be separated into three physical steps – source, release, and acceleration – that each leave distinct observational signatures on plasma parcels.  The Wang-Sheeley-Arge (WSA) model driven by Air Force Data Assimilative Photospheric Flux Transport (ADAPT) time-dependent photospheric field maps now has the ability to connect in situ observations more rigorously to their precise source at the Sun, allowing us to investigate the physical processes involved in solar wind formation.   In this talk, I will highlight my PhD dissertation research in which we use the ADAPT-WSA model to either characterize the solar wind emerging from specific sources, or investigate the formation process of various solar wind populations.  In the first study, we test the well-known inverse relationship between expansion factor (f<sub>s</sub>) and observed solar wind speed (v<sub>obs</sub>) for solar wind that emerges from a large sampling of pseudostreamers, to investigate if field line expansion plays a physical role in accelerating the solar wind from this source region.  We find that there is no correlation between f<sub>s</sub> and v<sub>obs</sub> at pseudostreamer cusps. In the second study, we determine the source locations of the first identified quasiperiodic density structures (PDSs) inside 0.6 au. Our modeling provides confirmation of these events forming via magnetic reconnection both near to and far from the heliospheric current sheet (HCS) – a direct test of the Separatrix-web (S-web) theory of slow solar wind formation.  In the final study, we use our methodology to identify the source regions of the first observations from the Parker Solar Probe (PSP) mission.  Our modeling enabled us to characterize the closest to the Sun observed coronal mass ejection (CME) to date as a streamer blowout.  We close with future ways that ADAPT-WSA can be used to test outstanding questions of solar wind formation.</p>


2021 ◽  
Vol 2103 (1) ◽  
pp. 012039
Author(s):  
D A Trofimov ◽  
S D Petrov ◽  
P V Movsesyan ◽  
K V Zheltova ◽  
V I Kiyaev

Abstract The extreme acceleration of the Earth rotation observed in the summer of 2020 is considered. It is concluded that this phenomenon is a consequence of two factors: the longterm acceleration of the Earth rotation, which has been observed since the 1970s, and the extremely strong meteorological excitation of the LOD, which took place in the summer of 2020. The coincidence of the anomaly of the AAM and the geomagnetic Dst index, as well as the correlation between the LOD on the one hand and the solar wind speed and the Gaussian coefficients of the expansion of the Earth’s magnetic field, on the other, are noted. The problem of negative leap second is considered. Preliminary estimates have been made of introduction of a negative leap second, if the current trends in the behavior of UT1-UTC continue. The conclusion is made about the low probability of such an event.


2020 ◽  
Author(s):  
Norberto Romanelli ◽  
Gina DiBraccio ◽  
Daniel Gershman ◽  
Guan Le ◽  
Christian Mazelle ◽  
...  

<p>In this work we perform the first statistical analysis of the main properties of waves observed in the 0.05–0.41 Hz frequency range in the Hermean foreshock by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Magnetometer. Although we find similar polarization properties to the '30 s' waves observed at the Earth's foreshock, the normalized wave amplitude (∼0.2) and occurrence rate (∼0.5%) are much smaller. This suggests significant lower backstreaming proton fluxes, due to the relatively low solar wind Alfvenic Mach number around Mercury. These differences could also be related to the relatively smaller foreshock size and/or more variable solar wind conditions. Furthermore, we estimate that the speed of resonant backstreaming protons in the solar wind reference frame (likely source for these waves) ranges between 0.95 and 2.6 times the solar wind speed. The closeness between this range and what is observed at other planetary foreshocks suggests that similar acceleration processes are responsible for this energetic population and might be present in the shocks of exoplanets.</p>


Sign in / Sign up

Export Citation Format

Share Document