scholarly journals Recent acceleration of the Earth rotation in the summer of 2020: possible causes and effects

2021 ◽  
Vol 2103 (1) ◽  
pp. 012039
Author(s):  
D A Trofimov ◽  
S D Petrov ◽  
P V Movsesyan ◽  
K V Zheltova ◽  
V I Kiyaev

Abstract The extreme acceleration of the Earth rotation observed in the summer of 2020 is considered. It is concluded that this phenomenon is a consequence of two factors: the longterm acceleration of the Earth rotation, which has been observed since the 1970s, and the extremely strong meteorological excitation of the LOD, which took place in the summer of 2020. The coincidence of the anomaly of the AAM and the geomagnetic Dst index, as well as the correlation between the LOD on the one hand and the solar wind speed and the Gaussian coefficients of the expansion of the Earth’s magnetic field, on the other, are noted. The problem of negative leap second is considered. Preliminary estimates have been made of introduction of a negative leap second, if the current trends in the behavior of UT1-UTC continue. The conclusion is made about the low probability of such an event.

1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


2009 ◽  
Vol 27 (11) ◽  
pp. 4221-4227 ◽  
Author(s):  
J. F. McKenzie

Abstract. This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona) are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.


2010 ◽  
Vol 17 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Mette Hartlev

AbstractEuropean countries share a number of fundamental values and ideas, but when it comes to the organisation of health care sectors and attitudes to basic patients’ rights, there are also vast differences. Consequently, at the European level health law has to balance between the aspiration for uniformity and universal respect for fundamental rights on the one hand, and acceptance of national diversity on the other. The aim of the article is to characterise European health law in terms of both divergence and harmonisation, and to explore the tension between these two features in light of current trends and challenges.


Traditio ◽  
1946 ◽  
Vol 4 ◽  
pp. 1-30 ◽  
Author(s):  
Philip Merlan

According to Aristotle all heavenly movement is ultimately due to the activity of forty-seven (or fifty-five) ‘unmoved movers'. This doctrine is highly remarkable in itself and has exercised an enormous historical influence. It forms part of a world-picture the outlines of which are as follows. The universe consists of concentric spheres, revolving in circles. The outermost of these bears the fixed stars. The other either bear planets or, insofar as they do not, contribute indirectly to the movements of the latter. Each sphere is moved by the one immediately surrounding it, but also possesses a movement of its own, due to its mover, an unmoved, incorporeal being. (It was these beings which the schoolmen designated as theintelligentiae separatae.) The seemingly irregular movements of the planets are thus viewed as resulting from the combination of regular circular revolutions. The earth does not move and occupies the centre of the universe. Such was Aristotle's astronomic system, essential parts of which were almost universally adopted by the Arabic, Jewish, and Christian philosophers of the Middle Ages.


2003 ◽  
Vol 21 (9) ◽  
pp. 1931-1938 ◽  
Author(s):  
B. V. Kozelov ◽  
T. V. Kozelova

Abstract. We propose a cellular automata model (CAM) to describe the substorm activity of the magnetospheric-ionospheric system. The state of each cell in the model is described by two numbers that correspond to the energy content in a region of the current sheet in the magnetospheric tail and to the conductivity of the ionospheric domain that is magnetically connected with this region. The driving force of the system is supposed to be provided by the solar wind that is convected along the two boundaries of the system. The energy flux inside is ensured by the penetration of the energy from the solar wind into the array of cells (magnetospheric tail) with a finite velocity. The third boundary (near to the Earth) is closed and the fourth boundary is opened, thereby modeling the flux far away from the tail. The energy dissipation in the system is quite similar to other CAM models, when the energy in a particular cell exceeds some pre-defined threshold, and the part of the energy excess is redistributed between the neighbouring cells. The second number attributed to each cell mimics ionospheric conductivity that can allow for a part of the energy to be shed on field-aligned currents. The feedback between "ionosphere" and "magnetospheric tail" is provided by the change in a part of the energy, which is redistributed in the tail when the threshold is surpassed. The control parameter of the model is the z-component of the interplanetary magnetic field (Bz IMF), "frozen" into the solar wind. To study the internal dynamics of the system at the beginning, this control parameter is taken to be constant. The dynamics of the system undergoes several bifurcations, when the constant varies from - 0.6 to - 6.0. The Bz IMF input results in the periodic transients (activation regions) and the inter-transient period decreases with the decrease of Bz. At the same time the onset of activations in the array shifts towards the "Earth". When the modulus of the Bz IMF exceeds some threshold value, the transition takes place from periodic to chaotic dynamics. In the second part of the work we have chosen as the source the real values of the z-component of the interplanetary magnetic field taken from satellite observations. We have shown that in this case the statistical properties of the transients reproduce the characteristic features observed by Lui et al. (2000).Key words. Magnetospheric physics (magnetosphere-ionosphere interactions) – Space plasma physics (nonlinear phenomena)


1964 ◽  
Vol 54 (6A) ◽  
pp. 1771-1777
Author(s):  
D. K. Sinha

abstract In recent years, Kaliski has contributed a series of papers on the interaction of elastic and magnetic fields and some of them, [1], [2], [3] are concerned with the propagation of waves in a semi-infinite medium either loaded or conditioned otherwise, at its free surface. Such problems, as Kaliski [1] has remarked, may have relevance in the practical seismic problem of detecting the mechanical explosions inside the earth. Moreover, their geophysical implications have also been examined by Knopoff [4[, Cagniard [5], Banos [6], and Rikitake [7]. The present note seeks to investigate disturbances in a medium consisting of two layers (one finite and the other infinite) of elastic medium intervened by a thin layer of vacuum. The vacuum is traversed by an initial magnetic field. The disturbances in the medium are assumed to have been produced by a time-dependent load on the free surface of the medium. The method of Laplace transform has been used to facilitate the solution of the problem.


2006 ◽  
Vol 24 (1) ◽  
pp. 407-414 ◽  
Author(s):  
S. Simon ◽  
T. Bagdonat ◽  
U. Motschmann ◽  
K.-H. Glassmeier

Abstract. The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions). When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.


2004 ◽  
Vol 22 (10) ◽  
pp. 3751-3769 ◽  
Author(s):  
R. Bruno ◽  
V. Carbone ◽  
L. Primavera ◽  
F. Malara ◽  
L. Sorriso-Valvo ◽  
...  

Abstract. In spite of a large number of papers dedicated to the study of MHD turbulence in the solar wind there are still some simple questions which have never been sufficiently addressed, such as: a) Do we really know how the magnetic field vector orientation fluctuates in space? b) What are the statistics followed by the orientation of the vector itself? c) Do the statistics change as the wind expands into the interplanetary space? A better understanding of these points can help us to better characterize the nature of interplanetary fluctuations and can provide useful hints to investigators who try to numerically simulate MHD turbulence. This work follows a recent paper presented by some of the authors which shows that these fluctuations might resemble a sort of random walk governed by Truncated Lévy Flight statistics. However, the limited statistics used in that paper did not allow for final conclusions but only speculative hypotheses. In this work we aim to address the same problem using more robust statistics which, on the one hand, forces us not to consider velocity fluctuations but, on the other hand, allows us to establish the nature of the governing statistics of magnetic fluctuations with more confidence. In addition, we show how features similar to those found in the present statistical analysis for the fast speed streams of solar wind are qualitatively recovered in numerical simulations of the parametric instability. This might offer an alternative viewpoint for interpreting the questions raised above.


Sign in / Sign up

Export Citation Format

Share Document