The Interplay between Volcanic and Solar Cooling in the Early 19th Century

Author(s):  
Shih-Wei Fang ◽  
Claudia Timmreck ◽  
Johann Jungclaus ◽  
Hauke Schmidt

<p>Volcanic eruptions and reduced solar radiance can individually cool our globe through both direct changes in incoming radiation and indirect influences from dynamical processes. However, whether the cooling from the combination of two forcing can be linearly additive, or if additional cooling exists when reduced solar radiance is imposed during volcanic eruptions remains unclear. In this project, by using the state-of-art climate model (MPI-ESM1-2-LR), we found that the total cooling of the two forcing can be additive, but also have additional cooling during the period when volcanic cooling bouncing back to climatology. Our experiments focus on the early 19th century (1791-1850) since the period existed multiple strong volcanic events (especially the 1809 unidentified eruption and 1815 Tambora eruption), a solar minimum (Dalton minimum from 1790-1830), and limited influence from anthropogenic greenhouse gases. In the presentation, we will discuss how volcanic eruptions and different amplitudes of solar reconstructions can individually and together cool the surface through both direct radiative changes and dynamical influences. Our main focus will be how the atmospheric circulation may influence the polar sea ice and large-scale climate patterns when imposing combinations of solar and volcanic forcing.</p>

2011 ◽  
Vol 7 (1) ◽  
pp. 381-395 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Easter Island, an isolated island in the Southeast Pacific, was settled by the Polynesians probably between 600 and 1200 AD and discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Easter Island, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Easter Island. Here, we analyze observational climate data for the last decades and climate model results for the period 800–1750 AD to explore potential causes for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Easter Island could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Easter Island region, although they are detectable in the simulations for many regions world wide. Hence we tentatively conclude that large-scale climate changes in the oceanic region around Easter Island might be too small to explain strong vegetation changes on the island over the last millennium.


2021 ◽  
Author(s):  
Zhihong Zhuo ◽  
Herman Fuglestvedt ◽  
Matthew Toohey ◽  
Michael J. Mills ◽  
Kirstin Krüger

<p>Major volcanic eruptions increase sulfate aerosols in the stratosphere. This causes a large-scale dimming effect with significant surface cooling and stratosphere warming. However, the climate impact differs for tropical and extratropical eruptions, and depends on the eruption season and height, and volcanic volatiles injections. In order to study different volcanic aerosol forcing and their climate impact, we perform simulations based on the fully coupled Community Earth System Model version 2 (CESM2) with the version 6 of the Whole Atmosphere Community Climate Model (WACCM6) with prognostic stratospheric aerosol and chemistry. In this study, explosive eruptions at 14.6 N and 63.6 N in January and July injecting 17 MT and 200 MT SO<sub>2</sub> at 24 km with and without halogens are simulated, in line with Central American Volcanic Arc and Icelandic volcanic eruptions. Simulated changes in the stratospheric sulfate and halogen burdens, and related impacts on aerosol optical depth, radiation, ozone and surface climate are analyzed. These simulated volcanic eruption cases will be compared with simulations based on the aerosol-climate model MAECHAM5-HAM.</p>


2009 ◽  
Vol 22 (8) ◽  
pp. 1934-1943 ◽  
Author(s):  
David W. J. Thompson ◽  
Susan Solomon

Abstract The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model. Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.


2011 ◽  
Vol 7 (2) ◽  
pp. 579-586 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Rapa Nui, an isolated island in the Southeast Pacific, was settled by the Polynesians most likely around 1200 AD and was discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Rapa Nui, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Rapa Nui. Here, we analyse observational climate data for the last decades and climate model results for the period 800–1750 AD to explore the potential for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Rapa Nui could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Rapa Nui region, although they are detectable in the simulations for many regions world wide. Hence, we tentatively conclude that large-scale climate changes in the oceanic region around Rapa Nui might be too small to explain strong vegetation changes on the island over the last millennium.


Author(s):  
S. M. Silverman ◽  
Hisashi Hayakawa

In addition to the regular Schwabe cycles of approximately 11 y, “prolonged solar activity minima” have been identified through the direct observation of sunspots and aurorae, as well as proxy data of cosmogenic isotopes. Some of these minima have been regarded as grand solar minima, which are arguably associated with the special state of the solar dynamo and have attracted significant scientific interest. In this paper, we review how these prolonged solar activity minima have been identified. In particular, we focus on the Dalton Minimum, which is named after John Dalton. We review Dalton’s scientific achievements, particularly in geophysics. Special emphasis is placed on his lifelong observations of auroral displays over approximately five decades in Great Britain. Dalton’s observations for the auroral frequency allowed him to notice the scarcity of auroral displays in the early 19th century. We analyze temporal variations in the annual frequency of such displays from a modern perspective. The contemporary geomagnetic positions of Dalton’s observational site make his dataset extremely valuable because his site is located in the sub-auroral zone and is relatively sensitive to minor enhancements in solar eruptions and solar wind streams. His data indicate clear solar cycles in the early 19th century and their significant depression from 1798 to 1824. Additionally, his data reveal a significant spike in auroral frequency in 1797, which chronologically coincides with the “lost cycle” that is believed to have occurred at the end of Solar Cycle 4. Therefore, John Dalton’s achievements can still benefit modern science and help us improve our understanding of the Dalton Minimum.


2020 ◽  
pp. 1-51
Author(s):  
Sara C. Sanchez ◽  
Gregory J. Hakim ◽  
Casey P. Saenger

AbstractScientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives (δ18O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early 19th century, southwestern Pacific corals produce El Niño Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yield reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012110
Author(s):  
V P Parkhomenko

Abstract Studies indicate the mass death of a significant number of biological groups on Earth, in particular - dinosaurs, at the end of the Cretaceous period 66 million years ago. Currently, there are two main theories: large-scale volcanic eruptions and the asteroid impact that formed the Chicxulub crater (Mexico). The production of sulfur-containing gases from the Earth’s surface layers vapors during impact is considered a main source of climatic effects, as they form stratospheric sulfate aerosols that block sunlight and thus cool the Earth’s atmosphere and interfere with photosynthesis. It is presented an application of the 3-D coupled global hydrodynamic climate model of intermediate complexity, including ocean model, sea ice evolution model and energy - moisture balance atmosphere model to study this asteroid impact effects on the Earth’s climate. The model continents and ocean depths distribution corresponds to Cretaceous period. A series of calculations with different residence times and deposition times of the stratosphere aerosol have been carried out. It was found that, depending on the stratosphere aerosol time parameters, the global annual average surface air temperature decreased by 18°C - 27°C, remained below zero for 4 - 30 years, and a recovery time of more than 30 years was observed.


2013 ◽  
Vol 13 (6) ◽  
pp. 15061-15104 ◽  
Author(s):  
J. G. Anet ◽  
S. Muthers ◽  
E. Rozanov ◽  
C. C. Raible ◽  
T. Peter ◽  
...  

Abstract. The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM – this effect is especially well visible for NOx/NOy. Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the EPP. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.


Author(s):  
Andrew Davies

‘America’s venture into the unknown’ shows how large-scale engineering endeavours were delivered, often very successfully, long before the formal tools, language, and discipline of project management were available. It describes the Erie Canal project, America’s most ambitious and largest engineering project of the early 19th century to create the world’s largest inland waterway connecting New York with Lake Erie. Despite numerous obstacles, the project was completed on time, close to the original cost estimate. The project created knowledge where no such capability existed before and where many unknown conditions would have to be faced and overcome. It became its own school of engineering and a training ground for project managers. It was the key to America’s industrial future.


Sign in / Sign up

Export Citation Format

Share Document