Plasma turbulence generated during particle acceleration in magnetic islands

Author(s):  
Valentina Zharkova ◽  
Qian Xia

<div> <div> <div> <p>We investigate plasma turbulence generated during particle acceleration in magnetic islands within 3D Harris-type reconnecting current sheets (RCSs),using the particle-in-cell approach.  RCSs with a strong guiding magnetic field  ar shown to lead to separation of electrons and ions into the opposite sides from the current sheet mid-plane that significantly reduces kink instability along the guiding field direction. Particles with the same charge also have asymmetric trajectories forming two distinct populations of beams: ‘transit’ particles, which pass through RCS from one edge to another, become strongly energised and form nearly unidirectional beams; and ‘bounced’ particles, which are reflected from the diffusion region and move back to the same side they entered the current sheet, gaining much less energy and forming more dispersive spatial distributions. Thes transit and bounced particles form the ‘bump-on-tail’ velocity distributions that naturally generate plasma turbulence. Using the wavelet analysis of electric and magnetic field fluctuations in the frequency domain, we identified some characteristic waves produced by particle beams. In particular, we found thre are Langmuir waves near X-nullpoints produced by two electron beam instabilities, while the presence of anisotropic temperature variations inside magnetic islands lead to whistler waves. The lower-hybrid waves are generated inside the magnetic islands, owing to the two-stream instabilities of the ions. While the high-frequency fluctuations, upper hybrid waves, or electron Bernstein waves, pile up near X-nullpoints. The results can be beneficial for understanding in-situ observations with modern space missions of energetic particles in the heliosphere.</p> </div> </div> </div>

Author(s):  
Valentina Zharkova ◽  
Qian Xia

In this article we aim to investigate the kinetic turbulence in a reconnecting current sheet (RCS) with X- and O-nullpoints and to explore its link to the features of accelerated particles. We carry out simulations of magnetic reconnection in a thin current sheet with 3D magnetic field topology affected by tearing instability until the formation of two large magnetic islands using particle-in-cell (PIC) approach. The model utilizes a strong guiding field that leads to the separation of the particles of opposite charges, the generation of a strong polarization electric field across the RCS, and suppression of kink instability in the “out-of-plane” direction. The accelerated particles of the same charge entering an RCS from the opposite edges are shown accelerated to different energies forming the “bump-in-tail” velocity distributions that, in turn, can generate plasma turbulence in different locations. The turbulence-generated waves produced by either electron or proton beams can be identified from the energy spectra of electromagnetic field fluctuations in the phase and frequency domains. From the phase space analysis we gather that the kinetic turbulence may be generated by accelerated particle beams, which are later found to evolve into a phase-space hole indicating the beam breakage. This happens at some distance from the particle entrance into an RCS, e.g. about 7di (ion inertial depth) for the electron beam and 12di for the proton beam. In a wavenumber space the spectral index of the power spectrum of the turbulent magnetic field near the ion inertial length is found to be −2.7 that is consistent with other estimations. The collective turbulence power spectra are consistent with the high-frequency fluctuations of perpendicular electric field, or upper hybrid waves, to occur in a vicinity of X-nullpoints, where the Langmuir (LW) can be generated by accelerated electrons with high growth rates, while further from X-nullponts or on the edges of magnetic islands, where electrons become ejected and start moving across the magnetic field lines, Bernstein waves can be generated. The frequency spectra of high- and low-frequency waves are explored in the kinetic turbulence in the parallel and perpendicular directions to the local magnetic field, showing noticeable lower hybrid turbulence occurring between the electron’s gyro- and plasma frequencies seen also in the wavelet spectra. Fluctuation of the perpendicular electric field component of turbulence can be consistent with the oblique whistler waves generated on the ambient density fluctuations by intense electron beams. This study brings attention to a key role of particle acceleration in generation kinetic turbulence inside current sheets.


2021 ◽  
Author(s):  
Patricio A. Munoz ◽  
Jörg Büchner ◽  
Neeraj Jain

<p>Turbulence is ubiquitous in solar system plasmas like those of the solar wind and Earth's magnetosheath. Current sheets can be formed out of this turbulence, and eventually magnetic reconnection can take place in them, a process that converts magnetic into particle kinetic energy. This interplay between turbulence and current sheet formation has been extensively analyzed with MHD and hybrid-kinetic models. Those models cover all the range between large Alfvénic scales down to ion-kinetic scales. The consequences of current sheet formation in plasma turbulence that includes electron dynamics has, however, received comparatively less attention. For this sake we carry out 2.5D fully kinetic Particle-in-Cell simulations of kinetic plasma turbulence including both ion and electron spectral ranges. In order to further assess the electron kinetic effects, we also compare our results with hybrid-kinetic simulations including electron inertia in the generalized Ohm's law. We analyze and discuss the electron and ion energization processes in the current sheets and magnetic islands formed in the turbulence. We focus on the electron and ion distribution functions formed in and around those current sheets and their stability properties that are relevant for the micro-instabilities feeding back into the turbulence cascade. We also compare pitch angle distributions and non-Maxwellian features such as heat fluxes with recent in-situ solar wind observations, which demonstrated local particle acceleration processes in reconnecting solar wind current sheets [Khabarova et al., ApJ, 2020].</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minjun J. Choi ◽  
Lāszlo Bardōczi ◽  
Jae-Min Kwon ◽  
T. S. Hahm ◽  
Hyeon K. Park ◽  
...  

AbstractMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.


2020 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Richard Denton ◽  
Kevin Genestreti ◽  
Takuma Nakamura ◽  
Tai Phan ◽  
...  

Abstract Establishing the mechanism of magnetic-to-particle energy conversion through magnetic reconnection in current sheets1 is the key to understanding the impact of fast release of magnetic energy in many space and astrophysical plasma systems, such as during magnetospheric substorms2,3. It is generally believed that an electron-scale diffusion region (EDR), where a magnetic-to-electron energy conversion occurs, has an X-type magnetic-field geometry4 around which the energy of anti-parallel magnetic fields injected is mostly converted to the bulk-flow energy of electrons by magnetic tension of reconnected field-lines5,6. However, it is at present unknown exactly how this energy conversion occurs in EDRs, because there has been no observational method to fully address this problem. Here we present state-of-the-art analysis of multi-spacecraft observations in Earth’s magnetotail of an electron-scale current sheet, which demonstrates that contrary to the standard model of reconnection with an X-type EDR geometry, the fast energy conversion in the detected EDR was caused mostly by magnetic-field annihilation, rather than reconnection. Furthermore, we detected a magnetic island forming in the EDR itself, implying that the EDR had an elongated shape ideal for island generation7 and magnetic-field annihilation. The experimental discovery of the annihilation-dominated EDR reveals a new form of energy conversion in the reconnection process that can occur when the EDR has evolved from the X-type to planar geometry.


1996 ◽  
Vol 56 (2) ◽  
pp. 265-284 ◽  
Author(s):  
Justin T. C. Ip ◽  
Bengt U. Ö. Sonnerup

The tearing-mode instability of a magnetic-field-reversing current sheet in the presence of coplanar incompressible stagnation-point flow is examined. The unperturbed equilibrium state is an exact solution of the steady-state, dissipative, incompressible magnetohydrodynamic equations; thus the analysis is valid even for small viscous and resistive Lundquist numbers Sν and Sη. The instability problem has no known analytical solution; for this reason, it is studied numerically by use of a finite-element method. Simulation results indicate stability for sufficiently small values of Sν or Sη and instability for large values. The boundary separating stable and unstable regions in the (Sν, Sη) plane is located. In the unstable regime, the simulation results show formation and subsequent convection of magnetic islands along the current sheet at about 80% of the unperturbed outflow flow speed, on average. Stretching and pinching of convecting magnetic islands are also observed. The results show the occurrence of multiple X-line reconnection at the centre of the current sheet (x = 0). Small-scale structures of vorticity and current density near the X-point reconnection sites are found to be qualitatively consistent with results obtained by Matthaeus. Normalized global linear growth rates are found to obey the approximate power law, within the ranges 20 ≦ Sν ≦ 70 and 200 ≦ Sη 1000. At least for Sν ≦ 1000, the number of magnetic islands is found to be nearly independent of Sν indicating the existence of a narrow band of dominant wavelengths in this range. The stretching of magnetic islands, which is present in this coplanar flow and field configuration, but not in the perpendicular flow and field configuration examined by Phan and Sonnerup, causes a substantial decrease in linear growth rate relative to that obtained by those authors. The stability curves obtained are qualitatively similar in both analyses, but the stable region is much larger for coplanar flow and field. Unlike most simulations of the tearing mode, no symmetry conditions are imposed on the perturbations; nevertheless, they develop in a symmetric manner.


2021 ◽  
Author(s):  
Florian Allmann-Rahn ◽  
Simon Lautenbach ◽  
Richard Sydora ◽  
Rainer Grauer

<p>The electromagnetic branch of the lower-hybrid drift instability (LHDI) can lead to kinking of current sheets and fluctuations in the magnetic field and is present for example in Earth’s magnetosphere. Previous particle-in-cell studies suggested that the electromagnetic LHDI’s saturation is at a moderate level and that strong current sheet kinking is only caused by slower kink-type modes. Here, we present kinetic continuum simulations that show strong kinking and high saturation levels of the B-field fluctuations. Has the impact of the electromagnetic LHDI been underestimated? The capability of the LHDI to produce x-lines and turbulence in 3D reconnection is discussed at the example of ten-moment multi-fluid simulations.</p>


Sign in / Sign up

Export Citation Format

Share Document