Diachronism as process-inherent part of Pleistocene river terrace formation: First results based on luminescence dating for testing a well-established theoretical concept and possible implications for practical field work

Author(s):  
Thomas Kolb ◽  
Markus Fuchs

<p>There are two main statements of a long-accepted paradigm of fluvial morphodynamics formalized inter alia by S.A. Schumm: (i) changes in fluvial systems strongly depend on exceeding external and / or internal thresholds ​​and (ii) they are always characterized by a nonlinear and asynchronous character. While the first aspect of this paradigm is part of numerous studies on fluvial morphology and river dynamics, the second aspect has so far tended to be sidelined in practical geomorphology.</p><p>With particular respect to the field of paleo-environmental research, this is evident from studies that aim at determining ages of Pleistocene river terraces in order to provide a time frame for the reconstruction of paleo-environmental conditions. Typically, numerical dating approaches are only applied to a single location that is supposed to be exemplary for the respective terrace level. Numerical ages determined for this specific location are then extrapolated and interpreted in a generalizing way to derive "THE age" of the river terrace as a whole.</p><p>With respect to the concept of asynchronism of fluvial reactions to environmental changes, such an approach seems problematic. In fact, asynchronism implies different sections of a river showing different and specific reactions to environmental changes at a given point in time. For fluvial terraces, this means that the processes controlling their formation may already have started in some sections of a valley, while in other sections they do not yet have any impact on landscape evolution.</p><p>In this contribution, we present luminescence ages of fluvial deposits originating from an Upper Pleistocene river terrace in a small valley located in the headwater of the Main River, Germany. Here, several samples from various locations throughout the river longitudinal course have been analysed. The luminescence ages determined for the lowermost part of the valley are significantly older than those from the middle section, which in turn are older than those from the valley’s upper reaches.</p><p>Our results suggest a diachronic alignment of sedimentation ages for fluvial deposits, starting with old ages close the mouth of a river and getting progressively younger for locations approaching the upper reaches. If these findings are confirmed in other fluvial systems and are not only the result of specific local conditions, they will be of great relevance for geomorphological research in fluvial landscapes. As a result, the widespread approach of deriving age estimates for fluvial terraces from numerical results merely determined for a single location appears to be inadequate and should be subjected to a critical review.</p>

2020 ◽  
Author(s):  
Thomas Kolb ◽  
Markus Fuchs ◽  
Ludwig Zöller

<p>Revealing an amazing diversity of forms, river systems have always to be interpreted as products of their specific landscapes. Extremely sensitive to external and internal forcing, they reflect the particular characteristics of climatological and geological conditions as well as the changes of these conditions. These changes are regularly preserved in depositional series whose varying sedimentary characteristics can be attributed either to palaeoclimatic variations or to tectonic activities and their corresponding changes in fluvial discharge and sediment load. What applies to fluvial sediments in general, is particularly true for river terraces. Regularly, they are regarded as valuable palaeoenvironmental and archaeological archives and their particular importance is well documented by a huge and still growing number of studies spanning a wide range of climatic and regional settings.</p><p>However, the information gained from fluvial terraces and their significance for palaeoenvironmental and present-day fluvial research strongly depend on an accurate and precise dating of the terrace formation. Numerical ages are of fundamental importance for the interpretation of sedimentological, morphological and stratigraphical findings. They are essential for assessing the influence of various driving forces and for providing insights into the mechanisms and dynamics of river adjustments over variable temporal scales.</p><p>In this contribution, we present luminescence ages of fluvial deposits originating from an Upper Pleistocene river terrace in a small valley located in the headwater of the Main River, Germany. For this study, several samples from various locations throughout the river longitudinal course have been analysed. Surprisingly, the determined luminescence ages for material from the lowermost part of the valley are significantly older than those from the middle section, which in turn are older than those from the valley’s upper reaches. Based on the evaluation of a high-resolution digital elevation model (DEM) and on intensive fieldwork, we can be sure that all samples originate from the very same morphological unit, a well-preserved late Pleistocene fluvial terrace.</p><p>Our results suggest a diachronic alignment of sedimentation ages for fluvial deposits, starting with old ages close to the mouth of a river and getting progressively younger for locations approaching the upper reaches. If these findings are confirmed in other fluvial systems and are not only the result of very specific local conditions, they will be of great relevance for geomorphological research in fluvial landscapes. As a result, the widespread approach of deriving age estimates for fluvial terraces from numerical results merely determined for a single location appears to be inadequate and should be subjected to a critical review.</p>


2021 ◽  
Author(s):  
Mihai Niculita

Abstract The Bahluieț Valley at Costești village geosite has been recently studied and proposed as a geoheritage site. Previously this area was investigated due to the presence of the Costești-Cier archaeological site, which is currently integrated into the National Archaeological Repertoire. In this archaeological site, different levels of populations have been studied (Eneolithic Cucuteni A, Cucuteni AB, and Horodiștea-Erbiceni Culture populations) as well as an earth wall from La Tene (8th‒10th/11th century BC), and a 15th‒17th century AD necropolis. In the area of the present-day Costești village, Bahluieț River leaves the Suceava Plateau area (with altitudes of 350‒550 m a.s.l.) and enters the Jijia Hills (with altitudes of 50 to 200 m a.s.l.), flowing between Ulmiș Hill (306 m a.s.l., at north) and Ruginii Hill (326 m a.s.l., at the south). The valley, which is incised more than 100 m below the plateau level, suddenly becomes broader because of massive Late Pleistocene landslides that covered the former Bahluieț river floodplain and are now fossilized by fluvial deposits. During the Holocene, the river incision detached paleochannels and fluvial terraces while the landslides reactivated through retrogressive mechanisms, creating a complex landslide. A cut-off meander island hosts the Costești-Cier archaeological site, being currently actively eroded by the river. In the riverbank of this island, a multi-layered stratigraphy can be seen, consisting of landslide and fluvial deposits, paleosoils, and archaeological remains. The layered deposits, the complex landslide, and the fluvial processes have the potential to become one of the most representative Quaternary sites of the Moldavian Plateau and Romania. By using geomorphosite assessment, geomorphological mapping optically stimulated luminescence dating, and geoconservation ideas, I show (i) the importance of the geosite due to the presence of the oldest dated fossil landslide from Romania and the landslide-fluvial-archaeological relations, (ii) the needs for protection at local, regional and national level considering the active processes that affect the site, and propose (iii) management and (iv) promotion of the geoheritage site using a geoconservation strategy.


2021 ◽  
Author(s):  
Caio Breda ◽  
Fabiano Nascimento Pupim

<p>The last 30 ka is a period marked by well-documented abrupt environmental changes on Earth. Despite the growing efforts to investigate the effects of past environmental changes in the fluvial dynamics, there is a lack of studies in intraplate tropical regions. Here, we applied geomorphological, sedimentological, and optically stimulated luminescence dating (OSL) technics to investigate the effects of environmental factors on the evolution of the Upper and Middle Tietê River during the Late Quaternary. Tietê River is one of the most important rivers of the southeast of Brazil, flowing from steepest to low-relief intraplate terrains, and under tropical climate. In order to understand the responses of the Tietê River system to environmental changes during the Late Quaternary, two main questions were tentatively answered: (i) what are the most important allogeneic factors for the evolution of this system?; (ii) how did climatic fluctuations affect river dynamics over time? We recognized a sequence of seven terraces, from 2 to 105 m above the channel, in the Middle Tietê valley. These terraces are formed by thin deposits (< 10 m), composed of sandy and conglomeratic sediments. The high and intermediate terrace levels of the Middle Tietê River are strath, while the low terraces of the middle reach are cut-and-fill. The formation of seven terrace levels in the Middle Tietê River was controlled by the combination of low erosion resistance of the lithological substrate and high stream power and coarse bedload that increase the erosion efficiency of the channels. OSL dating of sedimentary deposits in different terrace levels indicate 5 periods of aggradation in the Middle Tietê valley since the Last Glacial Maximum: 18.5 ± 2.0 ka; 9.8 ± 1.0 to 8.6 ± 0.8 ka; 7.1 ± 0.7 to 5.8 ± 0.5 ka; 4.2 ± 0.4 to 3.1 ± 0.3 ka; and 0.6 ± 0.06 ka. The results indicate that the activity of the South American Monsoon System induced the occurrence of climatic fluctuations and changes in vegetation cover in the river valleys of southeastern Brazil over the past 20 ka. The aggradation periods are correlated with more arid environmental conditions and sparser vegetation, while the incision events in the valley developed under transitions to humid environmental conditions and stimulated by vegetation recovery.</p><p><strong>Key-words: </strong>Tietê River, fluvial evolution, fluvial terraces, Quaternary geochronology.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Grace Tzun-Wen Shaw ◽  
An-Chi Liu ◽  
Chieh-Yin Weng ◽  
Yi-Chun Chen ◽  
Cheng-Yu Chen ◽  
...  

Abstract Over the past decades, one main issue that has emerged in ecological and environmental research is how losses in biodiversity influence ecosystem dynamics and functioning, and consequently human society. Although biodiversity is a common indicator of ecosystem functioning, it is difficult to measure biodiversity in microbial communities exposed to subtle or chronic environmental perturbations. Consequently, there is a need for alternative bioindicators to detect, measure, and monitor gradual changes in microbial communities against these slight, chronic, and continuous perturbations. In this study, microbial networks before and after subtle perturbations by adding S. acidaminiphila showed diverse topological niches and 4-node motifs in which microbes with co-occurrence patterns played the central roles in regulating and adjusting the intertwined relationships among microorganisms in response to the subtle environmental changes. This study demonstrates that microbial networks are a good bioindicator for chronic perturbation and should be applied in a variety of ecological investigations.


2015 ◽  
Vol 83 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Eike F. Rades ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen ◽  
Qiang Xu ◽  
Lin Ding

Many lakes on the Tibetan Plateau exhibit strandplains with a series of beach ridges extending high above the current lake levels. These beach ridges mark former lake highstands and therefore dating their formation allows the reconstruction of lake-level histories and environmental changes. In this study, we establish a lake-level chronology of Tangra Yum Co (fifth largest lake on the Tibetan Plateau) based on luminescence dating of feldspar from 17 beach-ridge samples. The samples were collected from two strandplains southeast and north of the lake and range in elevation from the current shore to 140 m above the present lake. Using a modified post-infrared IRSL protocol at 170°C we successfully minimised the anomalous fading in the feldspar IRSL signal, and obtained reliable dating results. The luminescence ages indicate three different stages of lake-level decline during the Holocene: (1) a phase of rapid decline (~ 50 m) from ~ 6.4 to ~ 4.5 ka, (2) a period of slow decline between ~ 4.5 and ~ 2.0 ka (~ 20 m), and (3) a fast decline by 70 m between ~ 2 ka and today. Our findings suggest a link between a decrease in monsoonal activity and lake-level decline since the early Holocene.


The Holocene ◽  
2018 ◽  
Vol 28 (6) ◽  
pp. 984-997 ◽  
Author(s):  
Andrea JM Hanna ◽  
Timothy M Shanahan ◽  
Mead A Allison ◽  
Thomas S Bianchi ◽  
Kathryn M Schreiner

The significant and ongoing environmental changes in Arctic regions demonstrate the need for quantitative, high-resolution records of pre-industrial climate change in this climatically sensitive region; such records are fundamental for understanding recent anthropogenic changes in the context of natural variability. Sediment contained within Arctic coastal environments proximal to large fluvial systems has the ability to record paleoclimate variability on subdecadal to decadal scale resolution, on par with many other terrestrial climate archives (i.e. lake sediments, ice cores). Here, we utilize one such sediment archive from Simpson Lagoon, Alaska, located adjacent to the Colville River Delta to reconstruct temperature variability and fluctuations in sediment sourcing over the past 1700 years. Quantitative reconstructions of summer air temperature are obtained using the branched glycerol dialkyl glycerol tetraether (brGDGT)-derived methylation index of branched tetraethers (MBT’)/cyclization ratio of branched tetraether (CBT) paleothermometer and reveal temperature departures correlative with noted climate events (i.e. ‘Little Ice Age’, ‘Medieval Climate Anomaly’). In addition, temporal variability in sediment sourcing to the lagoon, determined using a multi-proxy approach (i.e. granulometry, elemental analysis, clay mineralogy), broadly corresponds with temperature fluctuations, indicating relative increases in fluvial sediment discharge during colder intervals and decreased river discharge/increased coastal erosion during warmer periods. The Simpson Lagoon record presented in this study is the first temperature reconstruction, to our knowledge, developed from coastal marine sediments in the Alaskan Beaufort Sea.


2021 ◽  
Author(s):  
Anna E. Weinmann ◽  
Susan T. Goldstein ◽  
Maria V. Triantaphyllou ◽  
Martin R. Langer

<p>Benthic foraminifera are important indicators for ecological studies. The assemblage composition of local communities can be used to analyze influences of environmental variables such as temperature, salinity, pH, and others. In recent years, the experimental propagule method has emerged as an effective tool to evaluate the influence of these variables on assemblage dynamics of benthic foraminifera. Propagules (tiny juveniles) of benthic foraminifera are widespread and can survive outside of a species’ natural distribution range. Their ability to become dormant and be re-activated once local conditions become suitable, is an important driver behind the capacity of foraminiferal assemblages to react quickly to environmental changes. In the laboratory, the propagules are first separated from the coarser fractions by sieving and then cultured under different conditions.</p><p>In the present study, we analyzed the effect of ocean pH on the composition of shallow-water assemblages from Corfu Island (Greece). Like other calcifying organisms, assemblages of foraminifera are susceptible to pH variations and have revealed compositional shifts along natural or experimental pH gradients. Our experimental set-up included four pH treatments between 6.5 and 8.5 at constant temperature and salinity (22°C and 38 ppt) for 5 weeks.</p><p>At the conclusion of the cultivation experiment, we found high numbers of grown specimens (825–1564 per replicate) and a high survivability rate throughout all treatments (78–87%). Higher pH (7.8 and 8.5) resulted in assemblages that were dominated by monothalamous and porcelaneous species, whereas lower pH (6.5 and 7.2) lead to a reduction in porcelaneous and an increase in agglutinated species. Several taxa showed significant positive or negative correlations with decreasing pH values.</p><p>Our results are congruent with previous findings that reported compositional shifts from calcareous to agglutinated taxa with decreasing pH (both from culture and field observations). Our study also indicates that the activation of propagules is an important mechanism behind assemblage dynamics in shallow-water foraminifera. As such, it offers an improved insight into potential resilience and recovery mechanisms of foraminiferal assemblages with regard to local or seasonal pH variations as well as ongoing ocean acidification.</p>


Author(s):  
Yang Yu ◽  
Xianyan Wang ◽  
Shuangwen Yi ◽  
Xiaodong Miao ◽  
Jef Vandenberghe ◽  
...  

River aggradation or incision at different spatial-temporal scales are governed by tectonics, climate change, and surface processes which all adjust the ratio of sediment load to transport capacity of a channel. But how the river responds to differential tectonic and extreme climate events in a catchment is still poorly understood. Here, we address this issue by reconstructing the distribution, ages, and sedimentary process of fluvial terraces in a tectonically active area and monsoonal environment in the headwaters of the Yangtze River in the eastern Tibetan Plateau, China. Field observations, topographic analyses, and optically stimulated luminescence dating reveal a remarkable fluvial aggradation, followed by terrace formations at elevations of 55−62 m (T7), 42−46 m (T6), 38 m (T5), 22−36 m (T4), 18 m (T3), 12−16 m (T2), and 2−6 m (T1) above the present floodplain. Gravelly fluvial accumulation more than 62 m thick has been dated prior to 24−19 ka. It is regarded as a response to cold climate during the last glacial maximum. Subsequently, the strong monsoon precipitation contributed to cycles of rapid incision and lateral erosion, expressed as cut-in-fill terraces. The correlation of terraces suggests that specific tectonic activity controls the spatial scale and geomorphic characteristics of the terraces, while climate fluctuations determine the valley filling, river incision and terrace formation. Debris and colluvial sediments are frequently interbedded in fluvial sediment sequences, illustrating the episodic, short-timescale blocking of the channel ca. 20 ka. This indicates the potential impact of extreme events on geomorphic evolution in rugged terrain.


Sign in / Sign up

Export Citation Format

Share Document