Coupling the Community Land Model 5.0 with the Parallel Data Assimilation Framework

Author(s):  
Lukas Strebel ◽  
Heye Bogena ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

<p>Land surface models are important tools to improve our understanding of interacting ecosystem processes, but their predictions are associated with uncertainties related to model forcings, parameters and process simplifications. As high-quality observations become more and more available, they can be used to constrain the uncertainty of land surface model predictions. In this study, we use data assimilation for the fusion of data into the Community Land Model 5.0 (CLM5). CLM5 simulates a broad variety of important land surface processes including moisture and energy partitioning, surface runoff, subsurface runoff, photosynthesis and carbon and nitrogen storage in vegetation and soil. Here, we focus on water movement in soils and related soil hydraulic parameters and assimilate in-situ soil moisture data into CLM5 to improve the estimate of model states and soil hydraulic parameters. To do this, we have coupled the Parallel Data Assimilation Framework (PDAF) with CLM5. This coupling is based on the online variant of PDAF, i.e., data assimilation occurs during simulation runtime in the main memory and not via input/output files. Online coupling requires modification of the model source code, but we aim to keep the modifications to the CLM5 code minimal so that maintenance of the ongoing CLM5 developments remains straightforward. To this end, our approach reuses the existing CLM5 ensemble mode with only necessary adjustments to connect the PDAF parallel communicators. Furthermore, we developed the coupling in the framework of the Terrestrial System Modeling Platform (TSMP). TSMP is a highly modular modeling system for the fully integrated soil-vegetation-atmosphere system. To illustrate the potential of this coupling, we use the ensemble Kalman Filter to perform simultaneous state and parameter updates in a forest headwater catchment.</p>

2017 ◽  
Vol 21 (5) ◽  
pp. 2509-2530 ◽  
Author(s):  
Roland Baatz ◽  
Harrie-Jan Hendricks Franssen ◽  
Xujun Han ◽  
Tim Hoar ◽  
Heye Reemt Bogena ◽  
...  

Abstract. In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm−3 for the assimilation period and 0.05 cm3 cm−3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm−3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.


Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 247-259 ◽  
Author(s):  
Andrea Sz. Kishné ◽  
Yohannes Tadesse Yimam ◽  
Cristine L.S. Morgan ◽  
Bright C. Dornblaser

2020 ◽  
Vol 21 (8) ◽  
pp. 1889-1904
Author(s):  
Kshitij Parajuli ◽  
Scott B. Jones ◽  
David G. Tarboton ◽  
Lawrence E. Hipps ◽  
Lin Zhao ◽  
...  

AbstractConsiderable advancement in spatiotemporal resolution of remote sensing and ground-based measurements has enabled refinement of parameters used in land surface models for simulating surface water fluxes. However, land surface modeling capabilities are still inadequate for accurate representation of subsurface properties and processes, which continue to limit the accuracy of land surface model simulation. Our objective in this study was to examine the performance of the variously parameterized Noah land surface model with multiphysics option (Noah-MP) in simulating evapotranspiration (ET) and soil moisture dynamics in stony soils using verification from eddy covariance ET and in situ soil moisture data during the growing season of year 2015, obtained from the Lower Sheep subcatchment within the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated the performance of Noah-MP considering four different scenarios with 1) a one-layer soil profile with Noah-MP default soil hydraulic parameters and three more five-layer soil profiles using 2) Noah-MP default soil hydraulic parameters; 3) soil hydraulic parameters derived from a pedotransfer function using field observations; and 4) hydraulic parameters from scenario 3, which also accounted for stone content in each layer. Each modeling experiment was forced with the same set of initial conditions, atmospheric input, and vegetation parameters. Our results indicate that enhanced representation of soil profile properties and stone content information noticeably improve the Noah-MP land surface model simulation of soil moisture content and evapotranspiration.


2021 ◽  
Author(s):  
Lukas Strebel ◽  
Heye Bogena ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

Abstract. Land surface models are important for improving our understanding of the earth system. They are continuously improving and becoming more accurate in describing the varied surface processes, e.g. the Community Land Model version 5 (CLM5). Similarly, observational networks and remote sensing operations are increasingly providing more and higher quality data. For the optimal combination of land surface models and observation data, data assimilation techniques have been developed in the past decades that incorporate observations to update modeled states and parameters. The Parallel Data Assimilation Framework (PDAF) is a software environment that enables ensemble data assimilation and simplifies the implementation of data assimilation systems in numerical models. In this paper, we present the further development of the PDAF to enable its application in combination with CLM5. This novel coupling adapts the optional CLM5 ensemble mode to enable integration of PDAF filter routines while keeping changes to the pre-existing parallel communication infrastructure to a minimum. Soil water content observations from an extensive in-situ measurement network in the Wüstebach catchment in Germany are used to illustrate the application of the coupled CLM5+PDAF system. The results show overall reductions in root mean square error of soil water content from 7 % up to 35 % compared to simulations without data assimilation. We expect the coupled CLM5+PDAF system to provide a basis for improved regional to global land surface modelling by enabling the assimilation of globally available observational data.


2011 ◽  
Vol 32 (23) ◽  
pp. 8033-8051 ◽  
Author(s):  
Sujittra Charoenhirunyingyos ◽  
Kiyoshi Honda ◽  
Daroonwan Kamthonkiat ◽  
Amor V. M. Ines

2013 ◽  
Vol 14 (3) ◽  
pp. 869-887 ◽  
Author(s):  
Yongjiu Dai ◽  
Wei Shangguan ◽  
Qingyun Duan ◽  
Baoyuan Liu ◽  
Suhua Fu ◽  
...  

Abstract The objective of this study is to develop a dataset of the soil hydraulic parameters associated with two empirical soil functions (i.e., a water retention curve and hydraulic conductivity) using multiple pedotransfer functions (PTFs). The dataset is designed specifically for regional land surface modeling for China. The authors selected 5 PTFs to derive the parameters in the Clapp and Hornberger functions and the van Genuchten and Mualem functions and 10 PTFs for soil water contents at capillary pressures of 33 and 1500 kPa. The inputs into the PTFs include soil particle size distribution, bulk density, and soil organic matter. The dataset provides 12 estimated parameters and their associated statistical values. The dataset is available at a 30 × 30 arc second geographical spatial resolution and with seven vertical layers to the depth of 1.38 m. The dataset has several distinct advantages even though the accuracy is unknown for lack of in situ and regional measurements. First, this dataset utilizes the best available soil characteristics dataset for China. The Chinese soil characteristics dataset was derived by using the 1:1 000 000 Soil Map of China and 8595 representative soil profiles. Second, this dataset represents the first attempt to estimate soil hydraulic parameters using PTFs directly for continental China at a high spatial resolution. Therefore, this dataset should capture spatial heterogeneity better than existing estimates based on lookup tables according to soil texture classes. Third, the authors derived soil hydraulic parameters using multiple PTFs to allow flexibility for data users to use the soil hydraulic parameters most preferable to or suitable for their applications.


Sign in / Sign up

Export Citation Format

Share Document