Introducing digital information products of the four GeoERA groundwater projects for assessment and sustainable use of water resources and the subsurface in a changing climate

Author(s):  
Klaus Hinsby ◽  
Laurence Gourcy ◽  
Hans Peter Broers ◽  
Anker Lajer Højberg ◽  
Marco Bianchi ◽  
...  

<p>Sustainable evolution of groundwater quantity and quality is essential for sustainable development and protection of society and nature, globally, as acknowledged in the UN sustainable development goals and the European Green Deal. Too much? – too little? – and/or too polluted? are important questions to pose and answer in a changing climate with increasing pressures on water resources, severe loss of biodiversity, and a projected increase in extreme events resulting in an increasing risk of floods, droughts, landslides and land subsidence.   </p><p>Easy access to digital and FAIR (Findable, Accessible, Interoperable and reusable) data on groundwater quantity and quality is imperative for informed decision making and efficient climate change mitigation and adaptation to which sustainable groundwater management will contribute. Here we briefly present selected highlights and digital data products from the four GeoERA groundwater projects developed for and made available on the digital subsurface information platform of the European geological survey organizations. The ambition is to develop the digital information platform, EGDI (the European Geological Data Infrastructure) as the leading information platform for sustainable and integrated management of subsurface resources in Europe and one of the leading platforms, globally.</p>

2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


2021 ◽  
Vol 164 (1-2) ◽  
Author(s):  
Chad S. Boda ◽  
Turaj Faran ◽  
Murray Scown ◽  
Kelly Dorkenoo ◽  
Brian C. Chaffin ◽  
...  

AbstractLoss and damage from climate change, recognized as a unique research and policy domain through the Warsaw International Mechanism (WIM) in 2013, has drawn increasing attention among climate scientists and policy makers. Labelled by some as the “third pillar” of the international climate regime—along with mitigation and adaptation—it has been suggested that loss and damage has the potential to catalyze important synergies with other international agendas, particularly sustainable development. However, the specific approaches to sustainable development that inform loss and damage research and how these approaches influence research outcomes and policy recommendations remain largely unexplored. We offer a systematic analysis of the assumptions of sustainable development that underpins loss and damage scholarship through a comprehensive review of peer-reviewed research on loss and damage. We demonstrate that the use of specific metrics, decision criteria, and policy prescriptions by loss and damage researchers and practitioners implies an unwitting adherence to different underlying theories of sustainable development, which in turn impact how loss and damage is conceptualized and applied. In addition to research and policy implications, our review suggests that assumptions about the aims of sustainable development determine how loss and damage is conceptualized, measured, and governed, and the human development approach currently represents the most advanced perspective on sustainable development and thus loss and damage. This review supports sustainable development as a coherent, comprehensive, and integrative framework for guiding further conceptual and empirical development of loss and damage scholarship.


2021 ◽  
Vol 23 (4) ◽  
pp. 796-815
Author(s):  
Yang Wang ◽  
Sun Sun Lim

People are today located in media ecosystems in which a variety of ICT devices and platforms coexist and complement each other to fulfil users’ heterogeneous requirements. These multi-media affordances promote a highly hyperlinked and nomadic habit of digital data management which blurs the long-standing boundaries between information storage, sharing and exchange. Specifically, during the pervasive sharing and browsing of fragmentary digital information (e.g. photos, videos, online diaries, news articles) across various platforms, life experiences and knowledge involved are meanwhile classified and stored for future retrieval and collective memory construction. For international migrants who straddle different geographical and cultural contexts, management of various digital materials is particularly complicated as they have to be familiar with and appropriately navigate technological infrastructures of both home and host countries. Drawing on ethnographic observations of 40 Chinese migrant mothers in Singapore, this article delves into their quotidian routines of acquiring, storing, sharing and exchanging digital information across a range of ICT devices and platforms, as well as cultural and emotional implications of these mediated behaviours for their everyday life experiences. A multi-layer and multi-sited repertoire of ‘life archiving’ was identified among these migrant mothers in which they leave footprints of everyday life through a tactical combination of interactive sharing, pervasive tagging and backup storage of diverse digital content.


2018 ◽  
Vol 10 (10) ◽  
pp. 3428 ◽  
Author(s):  
Mengmeng Hao ◽  
Jingying Fu ◽  
Dong Jiang ◽  
Xiaoxi Yan ◽  
Shuai Chen ◽  
...  

Bioenergy is expected to play a key role in achieving a future sustainable energy system. Sweet sorghum-based fuel ethanol, one of the most promising bioenergy sources in China, has been receiving considerable attention. However, the conflict between sweet sorghum development and traditional water use has not been fully considered. The article presents an integrated method for evaluating water stress from sweet sorghum-based fuel ethanol in China. The region for developing sweet sorghum was identified from the perspective of sustainable development of water resources. First, the spatial distribution of the water demand of sweet sorghum-based fuel ethanol was generated with a Decision Support System for Agrotechnology Transfer (DSSAT) model coupled with Geo-Information System (GIS). Subsequently, the surplus of water resources at the provincial scale and precipitation at the pixel scale were considered during the growth period of sweet sorghum, and the potential conflicts between the supply and demand of water resources were analyzed at regional scale monthly. Finally, the development level of sweet sorghum-based fuel ethanol was determined. The results showed that if the pressure of water consumption of sweet sorghum on regional water resources was taken into account, about 23% of the original marginal land was not suitable for development of sweet sorghum-based fuel ethanol, mainly distributed in Beijing, Hebei, Ningxia, Shandong, Shanxi, Shaanxi, and Tianjin. In future energy planning, the water demand of energy plants must be fully considered to ensure its sustainable development.


Sign in / Sign up

Export Citation Format

Share Document