A preliminary assessment of the accuracy of the VGOS geodetic products: implications for the terrestrial reference frame and Earth orientation parameters

Author(s):  
Dhiman Mondal ◽  
Pedro Elosegui ◽  
John Barrett ◽  
Brian Corey ◽  
Arthur Niell ◽  
...  

<p>The next-generation VLBI system called VGOS (VLBI Global Observing System) has been designed and built as a significant improvement over the legacy geodetic VLBI system to meet the accuracy and stability goals set by the Global Geodetic Observing System (GGOS). Improved geodetic products are expected as the VGOS technique transitions from demonstration to operational status, which is underway. Since 2019, a network of nine VGOS stations has been observing bi-weekly under the auspices of the International VLBI Service for Geodesy and Astrometry (IVS) to generate standard geodetic products. These products, together with the mixed-mode VLBI observations that tie the VGOS and legacy networks together will be contributions to the next realization of the International Terrestrial Reference Frame (ITRF2020). Moreover, since 2020 a subset of 2 to 4 VGOS stations has also been observing in a VLBI Intensive-like mode to assess the feasibility of Earth rotation (UT1) estimation using VGOS. Intensives are daily legacy VLBI observations that are run on a daily basis using a single baseline between Kokee Park Geophysical Observatory, Hawaii, and Wettzell Observatory, Germany, made with the goal of near-real-time monitoring of UT1. In this presentation, we will describe the VGOS observations, correlation, post-processing, and preliminary geodetic results, including UT1. We will also compare the VGOS estimates to estimates from legacy VLBI, including estimates from mixed-mode observations, to explore the precision and accuracy of the VGOS products.</p>

2021 ◽  
Vol 55 ◽  
pp. 23-31
Author(s):  
Markus Mikschi ◽  
Johannes Böhm ◽  
Matthias Schartner

Abstract. The International VLBI Service for Geodesy and Astrometry (IVS) is currently setting up a network of smaller and thus faster radio telescopes observing at broader bandwidths for improved determination of geodetic parameters. However, this new VLBI Global Observing System (VGOS) network is not yet strongly linked to the legacy S/X network and the International Terrestrial Reference Frame (ITRF) as only station WESTFORD has ITRF2014 coordinates. In this work, we calculated VGOS station coordinates based on publicly available VGOS sessions until the end of 2019 while defining the geodetic datum by fixing the Earth orientation parameters and the coordinates of the WESTFORD station in an unconstrained adjustment. This set of new coordinates allows the determination of geodetic parameters from the analysis of VGOS sessions, which would otherwise not be possible. As it is the concept of VGOS to use smaller, faster slewing antennas in order to increase the number of observations, shorter estimation intervals for the zenith wet delays and the tropospheric gradients along with different relative constraints were tested and the best performing parametrization, judged by the baseline length repeatability, was used for the estimation of the VGOS station coordinates.


2021 ◽  
Author(s):  
Hana Krásná ◽  
David Mayer ◽  
Sigrid Böhm

<p>The next realization of the International Terrestrial Reference System, the ITRF2020, is planned to be released in 2021. Our joint VLBI Analysis Center VIE which runs between TU Wien and BEV is one of eleven IVS (International VLBI Service for Geodesy and Astrometry) analysis centres which provide VLBI input to the ITRF2020. The SINEX files submitted to the IVS Combination Center are produced with the Vienna VLBI and Satellite Software VieVS and contain unconstrained normal equation systems for station position, source coordinates and Earth orientation parameters. In this presentation, we document the included sessions and stations in our submission and introduce the Vienna terrestrial reference frame based on our contribution to the ITRF2020. In particular, we highlight special settings in the Vienna solution and assess the impact on the terrestrial reference frame.</p>


1996 ◽  
Vol 172 ◽  
pp. 491-496
Author(s):  
J. Vondrák

The indirect method of linking the Hipparcos reference frame to the frame defined by extragalactic sources is described. To this end, two independent time series of Earth orientation parameters observed by two different techniques with respect to the two reference frames are used: a) Optical astrometry observations (referred to Hipparcos stars), b) VLBI observations (referred to extragalactic objects). The parallel use of both techniques during the last decade enables to determine the orientation of the two reference frames at a fixed epoch and their mutual slow rotation with precision of at least 1mas and 1mas/year, respectively. In order not to raise confusion, the potentiality of the method is demonstrated on the example based on the star catalogues originally used at the participating observatories, not on any of the existing preliminary versions of the Hipparcos catalog.


2000 ◽  
Vol 178 ◽  
pp. 201-213 ◽  
Author(s):  
Ivan I. Mueller

AbstractThe International Earth Rotation Service (IERS) was established in 1987 by the International Astronomical Union (IAU) and the International Union of Geodesy and Geophysics (IUGG), and it began operation on 1 January 1988. The primary objectives of the IERS are to serve the astronomical, geodetic and geophysical communities by providing the following: •The International Celestial Reference System (ICRS) and its realization, the International Celestial Reference Frame (ICRF).•The International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF).•Earth orientation parameters required to study Earth orientation variations and to transform between the ICRF and the ITRF.•Geophysical data to interpret time/space variations of the ITRF with respect to the ICRF, i.e., of the Earth orientation parameters, and to model such variations.•Standards, constants and models (i.e., conventions) encouraging international adherence.This presentation primarily covers the first three IERS functions from the operational point of view.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maciej Michalczak ◽  
Marcin Ligas

Abstract Coordinates of the Earth’s pole represent two out of five Earth orientation parameters describing Earth’s rotation. They are necessary in transformation between celestial reference frame and terrestrial reference frame and what goes further in precise positioning and navigation, applications in astronomy, communication with outer space objects. Complexity of measuring techniques and data processing involved in the pole coordinates determination make it impossible to obtain them in real-time mode, hence a prediction problem of the polar motion emerges. In this study, geostatistical prediction methods, i. e., simple and ordinary kriging are applied. Millions of predictions have been performed to draw reasonable conclusions on prediction capabilities of applied kriging variants. The study is intended in ultra-short-term prediction (up to 15 days into the future) using the IERS EOP 14 C04 (IAU2000A) and IERS EOP 05 C04 (IAU2000A) series as a reference. Mean absolute prediction errors (for days 1–15) with respect to IERS 14 C04 are ranging 0.66–5.25 mas for PMx and 0.47–3.59 mas for PMy. On the other hand, for IERS 05 C04 the values are 0.60–4.95 mas and 0.44–3.29 mas for PMx and PMy; respectively. The results indicate competitiveness of the introduced methods with existing ones.


1993 ◽  
Vol 156 ◽  
pp. 406-406
Author(s):  
M. Feissel ◽  
Yaroslav Yatskiv

The International Earth Rotation Service (IERS) maintains a celestial reference frame and a terrestrial reference frame based on observations in Very Long Baseline radio Interferometry, Lunar and Satellite Laser Ranging, and Global Positioning System, as well as a time series of the Earth Orientation Parameters in a system that is consistent at the level of 0.001″.


2021 ◽  
Author(s):  
Guilhem Moreaux ◽  
Frank Lemoine ◽  
Hugues Capdeville ◽  
Petr Stepanek ◽  
Michiel Otten ◽  
...  

<p>In the context of the realization of the next International Terrestrial Reference Frame (ITRF2020), the International DORIS Service (IDS) is involved in the estimation of DORIS station positions/velocities as well as Earth orientation parameters from DORIS data. Thus, the 4 IDS Analysis Centers  have re-analyzed all the DORIS observations from the fifteen DORIS satellites from January 1993 to December 2020.0.</p><p>The primary objective of this study is to analyze the DORIS contribution to ITRF2020 in terms of (1) geocenter and scale solutions; (2) station positions and week-to-week repeatability; (3) Earth orientation parameters; (4) a cumulative position and velocity solution.</p><p>Comparisons with the IDS contribution to ITRF2014 will address the benefits of the new antenna models, new models, including improved methods to handle non-conservative force model error on the Jason satellites, as well as the addition of data (compared to ITRF2014) from the latest DORIS missions (e.g. Jason-3, Sentinel-3A/B) in the IDS combination.</p>


2016 ◽  
Vol 101 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Agata Wielgosz ◽  
Monika Tercjak ◽  
Aleksander Brzeziński

Abstract Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.


Sign in / Sign up

Export Citation Format

Share Document