Nonlinear Fourier Analysis for Two-Dimensional Ocean Surface Waves Described by the Zakharov Equation

Author(s):  
Alfred R. Osborne

<p>The physical hierarchy of two-dimensional ocean waves studied here consists of the 2+1 nonlinear Schrödinger equation (NLS), the Dysthe equation, the Trulsen-Dysthe equation, etc. on to the Zakharov equation. I call this the SDTDZ hierarchy. I demonstrate that the nonlinear Schrödinger equation with arbitrary potential is the natural way to treat this hierarchy, for any member of the hierarchy can be determined by an appropriate choice of the potential. Furthermore, the NLS equation with arbitrary potential can be written in terms of two bilinear forms and thereby has one and two-soliton solutions. To access the inverse scattering approach, I find a nearby equation which has N-soliton solutions: Such an equation is completely integrable by the IST on the infinite plane and by finite gap theory for periodic boundary conditions. In this way the entire SDTDZ hierarchy is closely related to a nearby integrable hierarchy which I refer to as the iSDTDZ hierarchy. Every member of this hierarchy has solutions in terms of ratios of Riemann theta functions and therefore every member has general spectral solutions in terms of quasiperiodic Fourier series. This last step occurs because ratios of theta functions are single valued, multiply periodic meromorphic functions. Once the quasiperiodic Fourier series are found, one can then invert these to determine the Riemann spectrum, namely, the Riemann matrix, wavenumbers, frequencies and phases. This means that the solutions of the nonlinear wave equations of the iSDTDZ hierarchy are generalized Fourier series indistinguishable from those of Paley and Weiner [1935] and therefore allows one to classify nonlinear wave motion in terms of a linear superposition of sine waves. How do the generalized quasiperiodic Fourier series differ from ordinary, standard periodic Fourier series? This can be seen by recognizing that the frequencies are incommensurable, and the phases can be phase locked. The nonlinear Fourier modes are Stokes waves and the coherent structure solutions are nonlinearly interacting, phase-locked Stokes waves, including breathers and superbreathers. Other types of coherent packets include fossil breathers and dromions. Techniques are developed for (1) numerical modeling of ocean waves (a fast algorithm for the Zakharov equation) and for (2) the nonlinear Fourier analysis of two-dimensional measured wave fields and space/time series (a 2D nonlinear Fourier analysis, implemented as a fast algorithm called the 2D NFFT). Examples of both applications are discussed.</p>

Author(s):  
Alfred R. Osborne

Abstract I give a description of nonlinear water wave dynamics using a recently discovered tool of mathematical physics I call nonlinear Fourier analysis (NLFA). This method is based upon and is an application of a theorem due to Baker [1897, 1907] and Mumford [1984] in the field of algebraic geometry and from additional sources by the author [Osborne, 2010, 2018, 2019]. The theory begins with the Kadomtsev-Petviashvili (KP) equation, a two dimensional generalization of the Korteweg-deVries (KdV) equation: Here the NLFA method is derived from the complete integrability of the equation by finite gap theory or the inverse scattering transform for periodic/quasiperiodic boundary conditions. I first show, for a one-dimensional, plane wave solution, that the KP equation can be rotated to a solution of the KdV equation, where the coefficients of KdV are now functions of the rotation angle. I then show how the rotated KdV equation can be used to compute the spectral solutions of the KP equation itself. Finally, I write the spectral solutions of the KP equation as a finite gap solution in terms of Riemann theta functions. By virtue of the fact that I am able to write a theta function formulation of the KP equation, it is clear that the wave dynamics lie on tori and constitute parallel dynamics on the tori in the integrable cases and non-parallel dynamics on the tori for certain perturbed quasi-integrable cases. Therefore, we are dealing with a Kolmogorov-Arnold-Moser KAM theory for nonlinear partial differential wave equations. The nonlinear Fourier series have particular nonlinear Fourier modes, including: sine waves, Stokes waves and solitons. Indeed the theoretical formulation I have developed is a kind of exact two-dimensional “coherent wave turbulence” or “integrable wave turbulence” for the KP equation, for which the Stokes waves and solitons are the coherent structures. I discuss how NLFA provides a number of new tools that apply to a wide range of problems in offshore engineering and coastal dynamics: This includes nonlinear Fourier space and time series analysis, nonlinear Fourier wave field analysis, a nonlinear random phase approximation, the study of nonlinear coherent functions and nonlinear bi and tri spectral analysis.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Osborne

I address the problem of breather turbulence in ocean waves from the point of view of the exact spectral solutions of the nonlinear Schrödinger (NLS) equation using two tools of mathematical physics: (1) the inverse scattering transform (IST) for periodic/quasiperiodic boundary conditions (also referred to as finite gap theory (FGT) in the Russian literature) and (2) quasiperiodic Fourier series, both of which enhance the physical and mathematical understanding of complicated nonlinear phenomena in water waves. The basic approach I refer to is nonlinear Fourier analysis (NLFA). The formulation describes wave motion with spectral components consisting of sine waves, Stokes waves and breather packets that nonlinearly interact pair-wise with one another. This contrasts to the simpler picture of standard Fourier analysis in which one linearly superposes sine waves. Breather trains are coherent wave packets that “breath” up and down during their lifetime “cycle” as they propagate, a phenomenon related to Fermi-Pasta-Ulam (FPU) recurrence. The central wave of a breather, when the packet is at its maximum height of the FPU cycle, is often treated as a kind of rogue wave. Breather turbulence occurs when the number of breathers in a measured time series is large, typically several hundred per hour. Because of the prevalence of rogue waves in breather turbulence, I call this exceptional type of sea state a breather sea or rogue sea. Here I provide theoretical tools for a physical and dynamical understanding of the recent results of Osborne et al. (Ocean Dynamics, 2019, 69, pp. 187–219) in which dense breather turbulence was found in experimental surface wave data in Currituck Sound, North Carolina. Quasiperiodic Fourier series are important in the study of ocean waves because they provide a simpler theoretical interpretation and faster numerical implementation of the NLFA, with respect to the IST, particularly with regard to determination of the breather spectrum and their associated phases that are here treated in the so-called nonlinear random phase approximation. The actual material developed here focuses on results necessary for the analysis and interpretation of shipboard/offshore platform radar scans and for airborne lidar and synthetic aperture radar (SAR) measurements.


2020 ◽  
Author(s):  
Alfred Osborne

<p>I give a new perspective for the description of nonlinear water wave trains using mathematical methods I refer to as nonlinear Fourier analysis (NLFA). I discuss how this approach holds for one-space and one time dimensions (1+1) and for two-space and one time dimensions (2+1) to all orders of approximation. I begin with the nonlinear Schroedinger (NLS) equation in 1+1 dimensions: Here the NLFA method is derived from the complete integrability of the equation by the periodic inverse scattering transform. I show how to compute the nonlinear Fourier series that exactly solve 1+1 NLS. I then show how to extend the order of 1+1 NLS to the Dysthe and the extended Dysthe equations. I also show how to include directional spreading in the formulation so that I can address the 2+1 NLS, the 2+1 Dysthe and the 2+1 Trulsen-Dysthe equations. This hierarchy of equations extends formally all the way to the Zakharov equations in the infinite order limit. Each order and extension from 1+1 to 2+1 dimensions is characterized by its own modulational dispersion relation that is required at each order of the NLFA formalism. NLFA is characterized by its own fundamental nonlinear Fourier series, which has particular nonlinear Fourier modes: sine waves, Stokes waves and breather trains. We are all familiar with sine waves (known for centuries) and Stokes waves (known since the Stokes paper in 1847). Breather trains have become known over the past three decades as a major source of rogue or freak waves in the ocean: Breather packets are known to pulse up and down during their evolution. At the moment of the maximum amplitude the largest wave in a breather packet is often referred to as a “rogue” or “freak” wave. Such extreme packets are known to be “coherent structures" so that pure linear dispersion does not occur as in a linear packet. Instead the breather packets have components that are phase locked with each other and hence remain coherent and are “long lived” just as vortices do in classical turbulence. Because the breathers live for a long time, the notion of risk based upon linear dispersion, as used in the oil and shipping industries, must be revised upwards. I discuss how to apply NLFA to (1) nonlinearly Fourier analyze time series, (2) to analyze wave fields from radar, lidar and synthetic aperture radar measurements, (3) how to treat NLFA to describe nonlinear, random wave trains using a kind of nonlinear random phase approximation and (4) how to compute the nonlinear power spectrum in terms of the parameters used to describe the rogue wave Fourier modes in a random wave train. Thus the emphasis here is to discuss a number of new tools for nonlinear Fourier analysis in a wide range of problems in the field of ocean surface waves.</p>


2011 ◽  
Vol 11 (02n03) ◽  
pp. 551-568
Author(s):  
FERENC WEISZ

With the help of the theory of multi-parameter martingales we prove almost everywhere convergence of the Fejér means of two-dimensional Walsh–Fourier series of f ∈ L log L.


Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


2021 ◽  
Vol 35 (13) ◽  
pp. 2150168
Author(s):  
Adel Darwish ◽  
Aly R. Seadawy ◽  
Hamdy M. Ahmed ◽  
A. L. Elbably ◽  
Mohammed F. Shehab ◽  
...  

In this paper, we use the improved modified extended tanh-function method to obtain exact solutions for the nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. With the aid of this method, we get many exact solutions like bright and singular solitons, rational, singular periodic, hyperbolic, Jacobi elliptic function and exponential solutions. Moreover, the two-dimensional and the three-dimensional graphs of some solutions are plotted for knowing the physical interpretation.


Author(s):  
ANDREI KHRENNIKOV

We develop Fourier analysis over hyperbolic algebra (the two-dimensional commutative algebra with the basis e1 = 1, e2 = j, where j2 = 1). We demonstrated that classical mechanics has, besides the well-known quantum deformation over complex numbers, another deformation — so-called hyperbolic quantum mechanics. The classical Poisson bracket can be obtained as the limit h → 0 not only of the ordinary Moyal bracket, but also a hyperbolic analogue of the Moyal bracket.


2021 ◽  
Vol 3 (1) ◽  
pp. 13-34
Author(s):  
Robert J Marks II

Continually expanding periodically translated kernels on the two dimensional grid can yield interesting, beau- tiful and even familiar patterns. For example, expand- ing circular pillbox shaped kernels on a hexagonal grid, adding when there is overlap, yields patterns includ- ing maximally packed circles and a triquetra-type three petal structure used to represent the trinity in Chris- tianity. Continued expansion yields the flower-of-life used extensively in art and architecture. Additional expansion yields an even more interesting emerging ef- florescence of periodic functions. Example images are given for the case of circular pillbox and circular cone shaped kernels. Using Fourier analysis, fundamental properties of these patterns are analyzed. As a func- tion of expansion, some effloresced functions asymp- totically approach fixed points or limit cycles. Most interesting is the case where the efflorescence never repeats. Video links are provided for viewing efflores- cence in real time.


Sign in / Sign up

Export Citation Format

Share Document