The hydroclimate-vegetation relationship in the Amazon basin during the last 20 years: an analysis focused on the southwestern region

Author(s):  
Omar Gutierrez-Cori ◽  
Jhan Carlo Espinoza ◽  
Laurent Z X Li ◽  
Sly Wongchuig-Correa ◽  
Paola A. Arias ◽  
...  

<p>The relationship between multiple hydroclimatic variables and vegetation conditions in the upper Madeira Basin (southwestern Amazon) has been analyzed. Vegetative dynamics are characterized using NDVI dataset as an indicator of the photosynthetic capacities of vegetation. Hydroclimatic variability is analyzed using satellite-based precipitation datasets, observed river discharge, and satellite measurements of terrestrial water storage (TWS). Our results show that the vegetation in the Basin varies from energy- to water-limited. During the peak of the wet season (January-February), rainfall, discharge, and TWS are negatively correlated with NDVI (r=-0.48 to -0.65), suggesting that during this period the vegetation is mainly energy-dependent. Outside this period, these correlations are positive (r=0.55 to 0.9), suggesting that vegetation depends mainly on water availability. This higher water dependence is more noticeable during the vegetation dry season (VDS; June-October). Considering the predominant land cover types, differences in the hydroclimate-NDVI relationship are observed. Evergreen forests remain energy-limited during the beginning of the VDS, but they become water-dependent almost at the end. Savannas show a different behavior, where water dependence occurs months before the onset of the VDS. On the other hand, unlike the other variables, the TWS better explains the NDVI in evergreen forests during the VDS (r=0.7 to 0.85). This is probably because evergreen forests are more dependent on deep soil water. A spatial analysis between hydroclimatic variables and the NDVI shows the predominance of positive correlations in most of the basin. However, specific areas do not show significant correlations. The weak relationship in these areas is explained by two factors i) very wet conditions during most of the year in the "rainfall hotspot" regions, where the vegetation is not water-limited, and ii) recent land-use changes (deforestation) that break the natural response in the hydroclimate-vegetation system. These findings provide new evidence on the impacts of the land cover changes on the natural relationship between vegetation and hydroclimatic variability, which is particularly relevant given the increasing rates of deforestation in this region during recent years.</p>

2021 ◽  
Vol 3 ◽  
Author(s):  
Omar Gutierrez-Cori ◽  
Jhan Carlo Espinoza ◽  
Laurent Z. X. Li ◽  
Sly Wongchuig ◽  
Paola A. Arias ◽  
...  

The southern Amazonia is undergoing a major biophysical transition, involving changes in land use and regional climate. This study provides new insights on the relationship between hydroclimatic variables and vegetation conditions in the upper Madeira Basin (~1 × 106 km2). Vegetative dynamics are characterised using the normalized difference vegetation index (NDVI) while hydroclimatic variability is analysed using satellite-based precipitation, observed river discharge, satellite measurements of terrestrial water storage (TWS) and downward shortwave radiation (DSR). We show that the vegetation in this region varies from energy-limited to water-limited throughout the year. During the peak of the wet season (January-February), rainfall, discharge and TWS are negatively correlated with NDVI in February-April (r = −0.48 to −0.65; p < 0.05). In addition, DSR is positively correlated with NDVI (r = 0.47–0.54; p < 0.05), suggesting that the vegetation is mainly energy-limited during this period. Outside this period, these correlations are positive for rainfall, discharge and TWS (r = 0.55–0.88; p < 0.05), and negative for DSR (r = −0.47 to −0.54; p < 0.05), suggesting that vegetation depends mainly on water availability, particularly during the vegetation dry season (VDS; late June to late October). Accordantly, the total rainfall during the dry season explains around 80% of the VDS NDVI interannual variance. Considering the predominant land cover types, differences in the hydroclimate-NDVI relationship are observed. Evergreen forests (531,350 km2) remain energy-limited during the beginning of the dry season, but they become water-limited at the end of the VDS. In savannas and flooded savannas (162,850 km2), water dependence occurs months before the onset of the VDS. These differences are more evident during extreme drought years (2007, 2010, and 2011), where regional impacts on NDVI were stronger in savannas and flooded savannas (55% of the entire surface of savannas) than in evergreen forests (40%). A spatial analysis reveals that two specific areas do not show significant hydroclimatic-NDVI correlations during the dry season: (i) the eastern flank of the Andes, characterised by very wet conditions, therefore the vegetation is not water-limited, and (ii) recent deforested areas (~42,500 km2) that break the natural response in the hydroclimate-vegetation system. These findings are particularly relevant given the increasing rates of deforestation in this region.


2006 ◽  
Vol 36 (4) ◽  
pp. 483-496 ◽  
Author(s):  
James Grogan ◽  
Jurandir Galvão

Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados) of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.


2017 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
Xuanlong Ma ◽  
Fabien Wagner ◽  
Hyungjun Kim ◽  
Taikan Oki ◽  
...  

Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon basin. We used in-situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (~ 1497 mm year−1) and the lowest values in the Solimões River basin (~ 986 mm year−1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.


2017 ◽  
Vol 8 (2) ◽  
pp. 439-454 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
Xuanlong Ma ◽  
Fabien Hubert Wagner ◽  
Hyungjun Kim ◽  
Taikan Oki ◽  
...  

Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (∼ 1497 mm year−1) and the lowest values in the Solimões River basin (∼ 986 mm year−1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.


2013 ◽  
Vol 14 (3) ◽  
pp. 1000-1008 ◽  
Author(s):  
Jhan Carlo Espinoza ◽  
Josyane Ronchail ◽  
Frédéric Frappart ◽  
Waldo Lavado ◽  
William Santini ◽  
...  

Abstract In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970–2012 period, focusing on the recent April 2012 flooding (55 400 m3 s−1). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Marañón River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970–2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 2012) suggests that they are characterized by a La Niña event, which originates a geopotential height wave train near the ground, with positive anomalies over the subtropical South and North Pacific and Atlantic and over southeastern South America. These patterns contribute to 1) the origin of an abundant humidity transport flux from the tropical North Atlantic and the Caribbean Sea toward the northwestern Amazon and 2) the maintenance of the monsoon flux over this region. They both favor a strong convergence of humidity in the northern Amazonas basin. Finally, the authors suggest that the intensity of floods is more likely related to an early La Niña event (as observed during the 2011/12 season), early rainfall, and simultaneous peaks of both tributaries of the Amazonas River.


2020 ◽  
Author(s):  
Sly Wongchuig Correa ◽  
Jhan Carlo Espinoza ◽  
Hans Segura ◽  
Thomas Condom ◽  
Clémentine Junquas

<p>Large evidences support the strong impacts on rainfall amount and the increasing of dry-season length on the Amazonian forest. All of these effects are usually attributed to large scale atmospheric circulation and to land cover changes as part of anthropogenic effects. In this research we assess statistical and modeling approaches to investigate the interaction between changes in forest cover and hydroclimate processes on a regional and local scale.</p><p>Henceforth, the deforestation areas and climatic indexes for the southern Amazon basin (south of 14°S) were evaluated. The deforestation map was estimated for the 1992-2018 period, based on global land cover maps at 300 m of spatial resolution produced by the European Space Agency (ESA) Climate Change Initiative (CCI) by using several remote sensing datasets. The CHIRPS rainfall dataset (P) for the 1981-2018 period was used to estimate the dry day frequency (DDF, P<1mm) and the wet day frequency (WDF, P>10mm). In addition, the mean actual seasonal evapotranspiration (AET) was GLEAM and ET-Amazon evapotranspiration datasets for the 1980-2018 and 2003-2013 periods respectively. In order to determine the local and the regional climatic effect for each pixel of the climatic index (DDF, WDF and AET), the deforestation fraction was estimated considering different spatial radii of influence (20 to 50 km).</p><p>The first results indicate a particular pattern in the southern Bolivian Amazon where two groups of areas were identified, considering the common period of analysis (1992-2018). One of them shows a significant relationship between increasing trend of DDF and decreasing trend of WDF while deforestation fraction is high, what mainly occurs during the wet season. In addition, this region is clearly placed in areas with values of deforestation fraction above ~30%, a closest value to the usually estimated Amazon Tipping Point (~40%). Below this value, the second group is also located in regions with positive trends of DDF and negative trends of WDF. This region has probably a strongest link with the large-scale climate.</p><p>Considering these preliminary results, the statistical approaches developed in this research could give some insights about the interactions between forest change and the regional hydro climatology, which might improve the understanding of this interaction based on large-scale hydrological modeling.</p>


2008 ◽  
Vol 21 (6) ◽  
pp. 1153-1170 ◽  
Author(s):  
Renato Ramos da Silva ◽  
David Werth ◽  
Roni Avissar

Abstract State-of-the-art socioeconomic scenarios of land-cover change in the Amazon basin for the years 2030 and 2050 are used together with the Regional Atmospheric Modeling System (RAMS) to simulate the hydrometeorological changes caused by deforestation in that region under diverse climatological conditions that include both El Niño and La Niña events. The basin-averaged rainfall progressively decreases with the increase of deforestation from 2000 to 2030, 2050, and so on, to total deforestation by the end of the twenty-first century. Furthermore, the spatial distribution of rainfall is significantly affected by both the land-cover type and topography. While the massively deforested region experiences an important decrease of precipitation, the areas at the edge of that region and at elevated regions receive more rainfall. Propagating squall lines over the massively deforested region dissipate before reaching the western part of the basin, causing a significant decrease of rainfall that could result in a catastrophic collapse of the ecosystem in that region. The basin experiences much stronger precipitation changes during El Niño events as deforestation increases. During these periods, deforestation in the western part of the basin induces a very significant decrease of precipitation. During wet years, however, deforestation has a minor overall impact on the basin climatology.


Author(s):  
Pauline Violanda Hostalero ◽  
Nguyen Thi Ha

Land use change has been assessed widely using Remote Sensing (RS) and Geographic Information System (GIS) techniques. The analysis of land use change was done by detecting land cover change. A study about land cover change, along with the self-employed workers’ perception towards changes between 2007 and 2017 were carried out in Nam Tu Liem District, Hanoi, Vietnam. The result of the study shows that the built-up lands have increased and remained to be the dominant land cover types in 2017. The agriculture has been declining mainly due to conversion into built-up land. Other land type including water, bare land, and vegetation have shown slight changes throughout the years. Overall changes from 2007 to 2017 shown that built-up land gained the most and agriculture land lost the most. On the other hand, the perception study’s major findings indicate that about two-thirds (69%) of respondents are aware of changes. However, almost one-third (31%) are unaware of the said topic. There are several factors that may affect the awareness of self-employed workers which will be cursory discussed in the study. This study in Nam Tu Liem District is a first step to determine and understand the major driving factors and their impacts on the land use changes in the area. A detailed land use/cover change study and a larger population size for perception studies are recommended in order for the government to formulate policies to achieve sustainable development.      


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 99 ◽  
Author(s):  
David Fernández-Nogueira ◽  
Eduardo Corbelle-Rico

This work aims to provide a comprehensive, wall-to-wall analysis of land use/cover changes in the continental areas of Portugal and Spain between 1990 and 2012. This overall objective is developed into two main research questions: (1) Whether differences between the extent and prevalence of changes exist between both countries and (2) which are the hotspots of change (areas where a given land use/cover transition dominates the landscape) in each country. We used Corine Land Cover in three different points in time (1990, 2000, 2012) to explore eight characteristic land cover transitions and carried out a cluster analysis at LAU2 level (municipalities in Spain, parishes in Portugal) that allowed to identify the areas in which each transition was dominant. The main findings include the decline of agricultural area and the increase of urbanized and artificial covers in both countries, but different trends followed by forest cover, with an increase in Spain and a decrease in Portugal. At the same time, the spatial analysis provided an overview of the main gradients of change related to tensions between agricultural intensification–extensification, on the one hand, and deforestation–afforestation, on the other.


Author(s):  
Judith Chepkorir Koskey ◽  
George Morara Ogendi ◽  
Charles Mwithali M'Erimba ◽  
Geoffry Mukonambi Maina

The Njoro and Kamweti River catchments are productive catchments that have and continue to experience major land-use changes with consequences on land cover and the associated environmental resources. It is, therefore, crucial to understand the type of changes occurring, spatial patterns, and the rates at which these changes are occurring. In this study, we quantified the changes in land use and land cover that occurred between 1988 and 2019 identifying areas of change and the average annual rate of change. Thematic Mappers (TM) and Enhanced Thematic Mappers Plus (ETM +) and Sentinel images were obtained for 1988 and 2019. Ground truthing was carried out to enable us to verify the accuracy of the remotely sensed data using in-situ observations to refine the classification output. The results obtained indicated that both catchments have experienced intense land-use changes but at different levels. Njoro River catchment’s forest cover and shrubland had decreased at a rate of 6.06 Km2/year and 0.92 Km2/year respectively and the most increase was recorded in farmlands (3.11 Km2/year) as the other land use classes also increased. In the Kamweti River catchment, forest cover showed a decrease at a rate of 0.21 Km2/year, and farmlands also a slight decrease of 0.1 Km2/year while the other land cover classes increased in area coverage during the period 1988-2019.  The changes in land use and land cover were attributed to increased demand for food and housing and thus continued degrading the two catchments especially the Njoro River catchment. Results obtained indicated that anthropogenic activities were the major contributing factors to the changes in Land Use Land Cover experienced in both catchments. We recommend continued analysis of the trends and rates of land cover conversions owing to their potential use by development planners. 


Sign in / Sign up

Export Citation Format

Share Document