scholarly journals The Major Floods in the Amazonas River and Tributaries (Western Amazon Basin) during the 1970–2012 Period: A Focus on the 2012 Flood*

2013 ◽  
Vol 14 (3) ◽  
pp. 1000-1008 ◽  
Author(s):  
Jhan Carlo Espinoza ◽  
Josyane Ronchail ◽  
Frédéric Frappart ◽  
Waldo Lavado ◽  
William Santini ◽  
...  

Abstract In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970–2012 period, focusing on the recent April 2012 flooding (55 400 m3 s−1). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Marañón River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970–2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 2012) suggests that they are characterized by a La Niña event, which originates a geopotential height wave train near the ground, with positive anomalies over the subtropical South and North Pacific and Atlantic and over southeastern South America. These patterns contribute to 1) the origin of an abundant humidity transport flux from the tropical North Atlantic and the Caribbean Sea toward the northwestern Amazon and 2) the maintenance of the monsoon flux over this region. They both favor a strong convergence of humidity in the northern Amazonas basin. Finally, the authors suggest that the intensity of floods is more likely related to an early La Niña event (as observed during the 2011/12 season), early rainfall, and simultaneous peaks of both tributaries of the Amazonas River.

2005 ◽  
Vol 62 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Jeannette E Zamon ◽  
David W Welch

The 1997–1998 El Niño was one of the strongest ocean warming events in the historical record followed by an equally strong cold La Niña event in 1999. We observed a rapid shift in the marine zooplankton assemblage found in the transitional area between the California Current domain and the Alaska Gyre domain. Nonmetric multidimensional scaling revealed that the shift in species composition was caused primarily by changes in the relative abundance of subtropical neritic copepods normally found in the California Current domain. In 1998, the subtropical neritic copepods Paracalanus, Ctenocalanus, and Corycaeus were found as far north as 56°N and occurred in 100%, 96%, and 51% of 1998 samples versus 16%, 5%, and 3% of 1999 samples. The type and magnitude of change were similar to those observed off central Oregon but differed from those observed in southeast Alaska. Results support the hypothesis that anomalous poleward transport can inject significant California Current water into the coastal circulation of the Alaska Gyre and suggest that alongshore connectivity between the two domains may extend farther to the north than previously thought.


2011 ◽  
Vol 11 (22) ◽  
pp. 11447-11453 ◽  
Author(s):  
M. M. Hurwitz ◽  
P. A. Newman ◽  
C. I. Garfinkel

Abstract. Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in the polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Niña conditions and the westerly phase of the quasi-biennial oscillation (QBO) were observed in March 2011. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist through March. Therefore, the La Niña and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, positive sea surface temperature anomalies in the North Pacific may have contributed to the unusually weak tropospheric wave driving and strong Arctic vortex in late winter 2011.


2017 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
Xuanlong Ma ◽  
Fabien Wagner ◽  
Hyungjun Kim ◽  
Taikan Oki ◽  
...  

Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon basin. We used in-situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (~ 1497 mm year−1) and the lowest values in the Solimões River basin (~ 986 mm year−1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.


2021 ◽  
Vol 2 (2) ◽  
pp. 395-412
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of tropical Pacific sea surface temperature (SST) variability on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 d band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean SST over the tropical Pacific. We find that the El Niño–Southern Oscillation (ENSO) explains a dominant fraction of the year-to-year changes in subseasonal SAT variability that are covarying with SST and thus likely more predictable. In agreement with previous studies, we find a tendency for La Niña conditions to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion during La Niña. Structural changes of these eddies are crucial to enhance the efficiency of the energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The enhanced likelihood of cold extremes over western North America is associated with both an increased subseasonal SAT variability and the cold winter-mean response to La Niña.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Thang Van Vu ◽  
Hieu Trong Nguyen ◽  
Thang Van Nguyen ◽  
Hiep Van Nguyen ◽  
Huong Thi Thanh Pham ◽  
...  

28 years (1980–2007) of station and gridded reanalysis data were used to investigate the effects of El Niño/Southern Oscillation (ENSO) on autumn rainfall in the Extended Central Vietnam (ECV) region. Results show that, under El Niño conditions, autumn rainfall in Central Vietnam is reduced by about 10 to 30%. This reduction seems to be caused by a weakening of the North East monsoon circulation, which appears to be linked to an anomalous anticyclonic vortex and a positive sea level pressure anomaly over the East Sea. In addition, the disappearance of a secondary moisture source over the southern region of the East Sea also favors the reduction in rainfall over this region. Conversely, during La Niña, the total autumn rainfall in the ECV region increases by about 9 to 19%. The strengthening of the North East monsoon, with a cyclonic wind anomaly over the East Sea, helps to increase the moisture supply to the area by about 10 to 20%, resulting in enhanced rainfall in the ECV. It is also found that the La Niña conditions do not only cause an increase in rainfall, but also change the temporal distribution of the monthly rainfall over the region, with more rainfall in the latter months of the year.


2018 ◽  
Vol 31 (24) ◽  
pp. 9941-9964 ◽  
Author(s):  
Elisa T. Sena ◽  
M. A. F. Silva Dias ◽  
L. M. V. Carvalho ◽  
P. L. Silva Dias

This study investigates the variability of the seasonal cycle of convection in the Brazilian Amazon basin during the last decades, and examines physical mechanisms that potentially trigger these modifications. A new methodology to evaluate the onset and length of the rainy season using long-term cloud fraction observations from geostationary satellites is proposed and the connection between cloud cycle variability, surface properties, and thermodynamic and dynamic conditions is explored. The results show that cloud cover has significantly decreased over the last decades. The decline in cloudiness is steeper at 1200 UTC (0800 LT), when a trend of up to −6% decade−1 is observed over the central and eastern Amazon. High-cloud-cover reduction is the major contributor to the observed decline in total cloud fraction. Delayed onsets and a reduction of up to 4 days yr−1 in the northern and central Amazon wet-season length are observed. Correlation analyses indicate that the El Niño phenomenon affects the interannual variability of cloudiness in the Amazon, leading to delayed onset and early demise of the rainy season. The tropical South Atlantic, the Pacific warm pool, and the North Atlantic tripole also play a small, but significant, role in the Amazon’s cloudiness variability. The decrease in cloudiness over the Amazon basin reduces the amount of solar radiation reflected back to space while increasing irradiance at the surface. This local warming alters surface heat fluxes and the atmospheric thermodynamic profile, further affecting cloud development. The strong tendencies reported here indicate a significant shift in the Amazonian hydroclimate during the last few decades.


2018 ◽  
Vol 32 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Wenjun Zhang ◽  
Xuebin Mei ◽  
Xin Geng ◽  
Andrew G. Turner ◽  
Fei-Fei Jin

Abstract Many previous studies have demonstrated a high uncertainty in the relationship between El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). In the present work, decadal modulation by the Atlantic multidecadal oscillation (AMO) is investigated as a possible cause of the nonstationary ENSO–NAO relationship based on observed and reanalysis data. It is found that the negative ENSO–NAO correlation in late winter is significant only when ENSO and the AMO are in phase (AMO+/El Niño and AMO−/La Niña). However, no significant ENSO-driven atmospheric anomalies can be observed over the North Atlantic when ENSO and the AMO are out of phase (AMO−/El Niño and AMO+/La Niña). Further analysis indicates that the sea surface temperature anomaly (SSTA) in the tropical North Atlantic (TNA) plays an essential role in this modulating effect. Because of broadly analogous TNA SSTA responses to both ENSO and the AMO during late winter, a warm SSTA in the TNA is evident when El Niño occurs during a positive AMO phase, resulting in a significantly weakened NAO, and vice versa when La Niña occurs during a negative AMO phase. In contrast, neither the TNA SSTA nor the NAO shows a prominent change under out-of-phase combinations of ENSO and AMO. The AMO modulation and the associated effect of the TNA SSTA are shown to be well reproduced by historical simulations of the HadCM3 coupled model and further verified by forced experiments using an atmospheric circulation model. These offer hope that similar models will be able to make predictions for the NAO when appropriately initialized.


2017 ◽  
Vol 8 (2) ◽  
pp. 439-454 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
Xuanlong Ma ◽  
Fabien Hubert Wagner ◽  
Hyungjun Kim ◽  
Taikan Oki ◽  
...  

Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (∼ 1497 mm year−1) and the lowest values in the Solimões River basin (∼ 986 mm year−1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.


2012 ◽  
Vol 19 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Milind Mujumdar ◽  
B. Preethi ◽  
T. P. Sabin ◽  
Karumuri Ashok ◽  
Sajjad Saeed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document