Ion-scale break of the plasma fluctuation spectra in different large-scale solar wind streams

Author(s):  
Maria Riazantseva ◽  
Liudmila Rakhmanova ◽  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
Georgy Zastenker ◽  
...  

<p>Appearance of measurements of the interplanetary medium parameters with high temporal resolution gave rise to a variety of investigations of turbulent cascade at ion kinetic scales at which processes of plasma heating was believed to operate. Our recent studies based on high frequency plasma measurements at Spektr-R spacecraft have shown that the turbulent cascade was not stable and dynamically changed depending on the plasma conditions in different large-scale solar wind structures. These changes was most significant at the kinetic scales of the turbulent cascade. Slow undisturbed solar wind was characterized by the consistency of the spectra to the predictions of the kinetic Alfven wave turbulence model. On the other hand, the discrepancy between the model predictions and registered spectra were found in stream interaction regions characterized by crucial steepening of spectra at the kinetic scales with slopes having values up to -(4-5). This discrepancy was clearly shown for plasma compression region Sheath in front of the magnetic clouds and CIR in front of high speed streams associated with coronal holes. Present study is focused on the break preceding the kinetic scales. Currently the characteristic plasma parameters associated with the formation of the break is still debated. Number of studies demonstrated that the break was consistent with distinct characteristic frequencies for different values ​​of the plasma proton parameter beta βp. Present study consider the ratio between the break frequency determined for ion flux fluctuation spectra according to Spektr-R data and several characteristic plasma frequencies used traditionally in such cases. The value of this ratio is statistically compared for different large-scale solar wind streams. We analyze both the classical spectrum view with two slopes and one break and the spectrum with flattening between magnetohydrodynamic and kinetic scales.  Our results show that for the Sheath and CIR regions characterized typically by βp ≤1 the break corresponds statistically to the frequency determined by the proton gyroradius. At the same time such correspondence are not observed either for the undisturbed slow solar wind with similar βp value or for disturbed flows associated with interplanetary manifestations of coronal mass ejections, where βp << 1. The results also shows that in slow undisturbed solar wind the break is closer to the frequency determined by the inertial proton length. Thus, apparently the transition between streams of different speeds may result in the change of dissipation regimes and plays role in plasma heating at these areas. This work was supported by the RFBR grant No. 19-02-00177a</p>

2020 ◽  
Author(s):  
Maria Riazantseva ◽  
Liudmila Rakhmanova ◽  
Georgy Zastenker ◽  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
...  

<p>Fluctuations of solar wind parameters can be strongly affected by the presence of sharp boundaries between different large-scale structures. Turbulence cannot develop freely across such boundaries, just as it could in the undisturbed solar wind. It can lead the growing of fluctuation level and changes in shape and properties of turbulent cascade too. The compression regions, for example  Sheath regions before magnetic clouds, and CIR regions (the compression areas between fast solar wind from coronal holes and slow solar wind  from coronal streamers), are  typical examples of such transitions.  Here we present the analysis of turbulence spectrum changes during crossings of  Sheath and CIR regions. We use unique high time resolution plasma measurements by BMSW instrument at Spektr-R spacecraft in order to consider both MHD and kinetic scales of turbulent cascade.  We analyze the base properties of  turbulence spectra: spectral power and slopes at corresponding scales, break frequency between scales, and also shape of spectra. We began by examining of the case study crossings of the transition regions and then compared statistically the spectral properties in such regions with the same ones in the undisturbed solar wind. We have shown that spectra fall nonlinearly at kinetic scales and become steeper with growing of fluctuation level in transition regions, at the same time the slope of spectra at MHD scale remains almost Kolmogorov. Withal some interesting features can be observed in the vicinity of the break between characteristic scales during crossing of transition regions. The given results reveal the lack of energy balance between MHD and kinetic scales, and can indicate the intensification of dissipation processes and the additional plasma heating in the  transition regions. The work is supported by Russian Science Foundation grant 16-12-10062.</p>


2021 ◽  
Author(s):  
Léa Griton ◽  
Sarah Watson ◽  
Nicolas Poirier ◽  
Alexis Rouillard ◽  
Karine Issautier ◽  
...  

<p>Different states of the slow solar wind are identified from in-situ measurements by Parker Solar Probe (PSP) inside 50 solar radii from the Sun (Encounters 1, 2, 4, 5 and 6). At such distances the wind measured at PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The Slow Solar Wind (SSW) states differ by their density, flux, plasma beta and magnetic pressure. PSP's magnetic connectivity established with Potential Field Source Surface (PFSS) reconstructions, tested against extreme ultraviolet (EUV) and white-light imaging, reveals the different states under study generally correspond to transitions from streamers to equatorial coronal holes. Solar wind simulations run along these differing flux tubes reproduce the slower and denser wind measured in the streamer and the more tenuous wind measured in the coronal hole. Plasma heating is more intense at the base of the streamer field lines rooted near the boundary of the equatorial hole than those rooted closer to the center of the hole. This results in a higher wind flux driven inside the streamer than deeper inside the equatorial hole. </p>


2020 ◽  
Author(s):  
Alexander Khokhlachev ◽  
Maria Riazantseva ◽  
Liudmila Rakhmanova ◽  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
...  

<p>The boundaries between large-scale solar wind streams are often accompanied by sharp changes in helium abundance.  Wherein the high value of relative helium abundance is known as a sign of some large-scale solar wind structures ( for example magnetic clouds). Unlike the steady slow solar wind where the helium abundance is rather stable and equals ~5%, in magnetic clouds its value can grow significantly up to 20% and more, and at the same time helium component becomes more variable.  In this paper we analyze the small-scale variations of solar wind plasma parameters, including the helium abundance variations in different large-scale solar wind streams, especially in magnetic clouds and Sheath regions before them. We use rather long intervals of simultaneous measurements at Spektr-R (spectrometer BMSW) and Wind (spectrometer 3DP) spacecrafts.  We choose the intervals with rather high correlation  level of plasma parameters as a whole to be sure that we are deal with the same plasma stream.  The intervals associated with different large scale-solar wind structures are selected by using of our catalog ftp://ftp.iki.rssi.ru/pub/omni/catalog/. For selected intervals we examine cross-correlation function for Spektr-R and Wind measurements  to reveal the local spatial inhomogeneities by helium abundance which can be observed only at one of spacecrafts, and we determine properties of ones. Such inhomogeneities can be generate by turbulence, which is typically getting more intense in the considered disturbed intervals in the solar wind. The work is supported by Russian Science Foundation grant 16-12-10062.</p>


2003 ◽  
Vol 21 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
H. A. Elliott ◽  
D. J. McComas ◽  
P. Riley

Abstract. Comparison of solar wind observations from the ACE spacecraft, in the ecliptic plane at ~ 1 AU, and the Ulysses spacecraft as it orbits over the Sun’s poles, provides valuable information about the latitudinal extent and variation of solar wind structures in the heliosphere. While qualitative comparisons can be made using average properties observed at these two locations, the comparison of specific, individual structures requires a procedure to determine if a given structure has been observed by both spacecraft. We use a 1-D hydrodynamic code to propagate ACE plasma measurements out to the distance of Ulysses and adjust for the differing longitudes of the ACE and Ulysses spacecraft. In addition to comparing the plasma parameters and their characteristic profiles, we examine suprathermal electron measurements and magnetic field polarity to help determine if the same features are encountered at both ACE and Ulysses. The He I l 1083 nm coronal hole maps are examined to understand the global structure of the Sun during the time of our heliospheric measurements. We find that the same features are frequently observed when both spacecraft are near the ecliptic plane. Stream structures derived from smaller coronal holes during the rising phase of solar cycle 23 persists over 20°–30° in heliolatitude, consistent with their spatial scales back at the Sun.Key words. Interplanetary physics (solar wind plasma)


2021 ◽  
Author(s):  
Jana Šafránková ◽  
Zdeněk Němeček ◽  
František Němec ◽  
Luca Franci ◽  
Alexander Pitňa

<p>The solar wind is a unique laboratory to study the turbulent processes occurring in a collisionless plasma with high Reynolds numbers. A turbulent cascade—the process that transfers the free energy contained within the large scale fluctuations into the smaller ones—is believed to be one of the most important mechanisms responsible for heating of the solar corona and solar wind. The paper analyzes power spectra of solar wind velocity, density and magnetic field fluctuations that are computed in the frequency range around the break between inertial and kinetic scales. The study uses measurements of the Bright Monitor of the Solar Wind (BMSW) on board the Spektr-R spacecraft with a time resolution of 32 ms complemented with 10 Hz magnetic field observations from the Wind spacecraft propagated to the Spektr-R location. The statistics based on more than 42,000 individual spectra show that: (1) the spectra of both quantities can be fitted by two (three in the case of the density) power-law segments; (2) the median slopes of parallel and perpendicular fluctuation velocity and magnetic field components are different; (3) the break between MHD and kinetic scales as well as the slopes are mainly controlled by the ion beta parameter. These experimental results are compared with high-resolution 2D hybrid particle-in-cell simulations, where the electrons are considered to be a massless, charge-neutralizing fluid with a constant temperature, whereas the ions are described as macroparticles representing portions of their distribution function. In spite of several limitations (lack of the electron kinetics, lower dimensionality), the model results agree well with the experimental findings. Finally, we discuss differences between observations and simulations in relation to the role of important physical parameters in determining the properties of the turbulent cascade.</p>


2004 ◽  
Vol 11 (5/6) ◽  
pp. 535-543 ◽  
Author(s):  
Y. Voitenko ◽  
M. Goossens

Abstract. There is abundant observational evidence that the energization of plasma particles in space is correlated with an enhanced activity of large-scale MHD waves. Since these waves cannot interact with particles, we need to find ways for these MHD waves to transport energy in the dissipation range formed by small-scale or high-frequency waves, which are able to interact with particles. In this paper we consider the dissipation range formed by the kinetic Alfvén waves (KAWs) which are very short- wavelengths across the magnetic field irrespectively of their frequency. We study a nonlocal nonlinear mechanism for the excitation of KAWs by MHD waves via resonant decay AW(FW)→KAW1+KAW2, where the MHD wave can be either an Alfvén wave (AW), or a fast magneto-acoustic wave (FW). The resonant decay thus provides a non-local energy transport from large scales directly in the dissipation range. The decay is efficient at low amplitudes of the magnetic field in the MHD waves, B/B0~10-2. In turn, KAWs are very efficient in the energy exchange with plasma particles, providing plasma heating and acceleration in a variety of space plasmas. An anisotropic energy deposition in the field-aligned degree of freedom for the electrons, and in the cross-field degrees of freedom for the ions, is typical for KAWs. A few relevant examples are discussed concerning nonlinear excitation of KAWs by the MHD wave flux and consequent plasma energization in the solar corona and terrestrial magnetosphere.


2020 ◽  
Vol 500 (3) ◽  
pp. 2786-2797
Author(s):  
A A Melkumyan ◽  
A V Belov ◽  
M A Abunina ◽  
A A Abunin ◽  
E A Eroshenko ◽  
...  

ABSTRACT The behaviour of the solar wind (SW) proton temperature and velocity and their relationship during Forbush decreases (FDs) associated with various types of solar source – coronal mass ejections (CMEs) and coronal holes (CHs) – have been studied. Analysis of cosmic ray variations, SW temperature, velocity, density, plasma beta, and magnetic field (from 1965–2019) is carried out using three databases: the OMNI database, Variations of Cosmic Rays database (IZMIRAN) and Forbush Effects & Interplanetary Disturbances database (IZMIRAN). Comparison of the observed SW temperature (T) and velocity (V) for the undisturbed SW allows us to derive a formula for the expected SW temperature (Texp, the temperature given by a T–V formula, if V is the observed SW speed). The results reveal a power-law T–V dependence with a steeper slope for low speeds (V < 425 km s−1, exponent = 3.29 ± 0.02) and flatter slope for high speeds (V > 425 km s−1, exponent = 2.25 ± 0.02). A study of changes in the T–V dependence over the last five solar cycles finds that this dependence varies with solar activity. The calculated temperature index KT = T/Texp can be used as an indicator of interplanetary and solar sources of FDs. It usually has abnormally large values in interaction regions of different-speed SW streams and abnormally low values inside magnetic clouds (MCs). The results obtained help us to identify the different kinds of interplanetary disturbance: interplanetary CMEs, sheaths, MCs, corotating interaction regions, high-speed streams from CHs, and mixed events.


2018 ◽  
Vol 36 (6) ◽  
pp. 1607-1630 ◽  
Author(s):  
Eckart Marsch

Abstract. This paper reviews recent aspects of solar wind physics and elucidates the role Alfvén waves play in solar wind acceleration and turbulence, which prevail in the low corona and inner heliosphere. Our understanding of the solar wind has made considerable progress based on remote sensing, in situ measurements, kinetic simulation and fluid modeling. Further insights are expected from such missions as the Parker Solar Probe and Solar Orbiter. The sources of the solar wind have been identified in the chromospheric network, transition region and corona of the Sun. Alfvén waves excited by reconnection in the network contribute to the driving of turbulence and plasma flows in funnels and coronal holes. The dynamic solar magnetic field causes solar wind variations over the solar cycle. Fast and slow solar wind streams, as well as transient coronal mass ejections, are generated by the Sun's magnetic activity. Magnetohydrodynamic turbulence originates at the Sun and evolves into interplanetary space. The major Alfvén waves and minor magnetosonic waves, with an admixture of pressure-balanced structures at various scales, constitute heliophysical turbulence. Its spectra evolve radially and develop anisotropies. Numerical simulations of turbulence spectra have reproduced key observational features. Collisionless dissipation of fluctuations remains a subject of intense research. Detailed measurements of particle velocity distributions have revealed non-Maxwellian electrons, strongly anisotropic protons and heavy ion beams. Besides macroscopic forces in the heliosphere, local wave–particle interactions shape the distribution functions. They can be described by the Boltzmann–Vlasov equation including collisions and waves. Kinetic simulations permit us to better understand the combined evolution of particles and waves in the heliosphere.


2020 ◽  
Author(s):  
Luca Sorriso-Valvo ◽  
Francesco Carbone ◽  
Daniele Telloni

<p>The fluctuations of proton density in the slow solar wind are analyzed by means of joint Empirical Mode Decomposition (EMD) and Mutual Information (MI) analysis. The analysis reveal that, within the turbulent inertial range, the EMD modes associated with nearby scales have their phases correlated, as shown by the large information exchange. This is a qunatitative measure of the information flow occurring in the turbulent cascade. On the other hand, at scales smaller than the ion gyroscale, the information flow is lost, and the mutual information is low, suggesting that in the kinetic range the nonlinear interacions are no longer sustaining a turbulent energy cascade.</p>


Sign in / Sign up

Export Citation Format

Share Document