How does the soil moisture influence the surface energy fluxes? An observational study at La Herrería Forest (Central Spain)

Author(s):  
Jorge Valverde ◽  
Carlos Román-Cascón ◽  
Carlos Yagüe ◽  
Gregorio Maqueda

<p>This work presents the characterization and comparison of the response of evapotranspiration (ET) to variations in shallow soil moisture (SM) in three years with different precipitation regimes: 2017, 2018 and 2019, through the analysis of tower data from La Herrería site, a forest site in the foothills of the Guadarrama Mountains in Spain. The aim of this work is to improve the comprehension of the relations of these variables (ET and SM) and their dependence on rain regimes in the studied years. To assess this, monthly SM regimes are considered, with three main types: transitional, wet and dry. The study shows the highly variable response of ET to variations in SM, which depends on the three considered SM regimes. In transitional regimes, SM strongly constrains ET variability, in wet regimes, SM does not impact ET variability, and in dry regimes, SM has a small impact in ET variability, due to its small variations. In particular, the months which suit satisfactorily to these regimes are identified, such as July 2018 (transitional, r=0.73), November 2019 (wet, r=-0.27) and August 2018 (dry, r=0.36), being r the coefficient of linear correlation between ET and SM. Some months that do not fit in the proposed scheme are also identified, and they have to be analyzed independently. This research shows the need to take into account different physical processes that affect ET, the complexity in the treatment of observational (tower) data for this type of analysis, and illustrates how the election of the length of the studied period is important for this type of analysis. Hence, it should be carefully chosen, because the interpretation of the results can be different depending on this choice.</p>

2021 ◽  
Author(s):  
Erin Nicholls ◽  
Gordon Drewitt ◽  
Sean Carey

<p>As a result of altitude and latitude amplified impacts of climate change, widespread alterations in vegetation composition, density and distribution are widely observed across the circumpolar north. The influence of this vegetation change on the timing and magnitude of hydrological fluxes is uncertain, and is confounded by changes driven by increased temperatures and altered precipitation (P) regimes. In northern alpine catchments, quantification of total evapotranspiration (ET) and evaporative partitioning across a range of elevation-based ecosystems is critical for predicting water yield under change, yet remains challenging due to coupled environmental and phenological controls on transpiration (T). In this work, we analyze 6 years of surface energy balance, ET, and sap flow data at three sites along an elevational gradient in a subarctic, alpine catchment near Whitehorse, Yukon Territory, Canada. These sites provide a space-for-time evaluation of vegetation shifts and include: 1) a low-elevation boreal white spruce forest (~20 m), 2) a mid-elevation subalpine taiga comprised of tall willow (Salix) and birch (Betula) shrubs (~1-3 m) and 3) a high-elevation subalpine taiga with shorter shrub cover (< 0.75 m) and moss, lichen, and bare rock. Specific objectives are to 1) evaluate interannual ET dynamics within and among sites under different precipitation regimes , and 2) assess the influence of vegetation type and structure, phenology, soil and meteorological controls on ET dynamics and partitioning.  Eddy covariance and sap flow sensors operated year-round at the forest and during the growing season at the mid-elevation site on both willow and birch shrubs for two years. Growing season ET decreased and interannual variability increased with elevation, with June to August ET totals of 250 (±3) mm at Forest, 192 (±9) mm at the tall shrub site, and 180 (± 26) mm at the short shrub site. Comparatively, AET:P ratios were the highest and most variable at the forest (2.4 ± 0.3) and similar at the tall and short shrub (1.2 ± 0.1).  At the forest, net radiation was the primary control on ET, and 55% was direct T from white spruce. At the shrub sites, monthly ET rates were similar except during the peak growing season when T at the tall shrub site comprised 89% of ET, resulting in greater total water loss. Soil moisture strongly influenced T at the forest, suggesting the potential for moisture stress, yet not at the shrub sites where there was no moisture limitation. Results indicate that elevation advances in treeline will increase overall ET and lower interannual variability; yet the large water deficit during summer implies a strong reliance on early spring snowmelt recharge to sustain soil moisture. Changes in shrub height and density will increase ET primarily during the mid-growing season. This work supports the assertion that predicted changes in vegetation type and structure will have a considerable impact on water partitioning in northern regions, and will also vary in a multifaceted way in response to changing temperature and P regimes.  </p>


2013 ◽  
Vol 10 (12) ◽  
pp. 7999-8012 ◽  
Author(s):  
C. L. Phillips ◽  
K. J. McFarlane ◽  
D. Risk ◽  
A. R. Desai

Abstract. While radiocarbon (14C) abundances in standing stocks of soil carbon have been used to evaluate rates of soil carbon turnover on timescales of several years to centuries, soil-respired 14CO2 measurements are an important tool for identifying more immediate responses to disturbance and climate change. Soil Δ14CO2 data, however, are often temporally sparse and could be interpreted better with more context for typical seasonal ranges and trends. We report on a semi-high-frequency sampling campaign to distinguish physical and biological drivers of soil Δ14CO2 at a temperate forest site in northern Wisconsin, USA. We sampled 14CO2 profiles every three weeks during snow-free months through 2012 in three intact plots and one trenched plot that excluded roots. Respired Δ14CO2 declined through the summer in intact plots, shifting from an older C composition that contained more bomb 14C to a younger composition more closely resembling present 14C levels in the atmosphere. In the trenched plot, respired Δ14CO2 was variable but remained comparatively higher than in intact plots, reflecting older bomb-enriched 14C sources. Although respired Δ14CO2 from intact plots correlated with soil moisture, related analyses did not support a clear cause-and-effect relationship with moisture. The initial decrease in Δ14CO2 from spring to midsummer could be explained by increases in 14C-deplete root respiration; however, Δ14CO2 continued to decline in late summer after root activity decreased. We also investigated whether soil moisture impacted vertical partitioning of CO2 production, but found this had little effect on respired Δ14CO2 because CO2 contained modern bomb C at depth, even in the trenched plot. This surprising result contrasted with decades to centuries-old pre-bomb CO2 produced in lab incubations of the same soils. Our results suggest that root-derived C and other recent C sources had dominant impacts on respired Δ14CO2 in situ, even at depth. We propose that Δ14CO2 may have declined through late summer in intact plots because of continued microbial turnover of root-derived C, following declines in root respiration. Our results agree with other studies showing declines in the 14C content of soil respiration over the growing season, and suggest inputs of new photosynthates through roots are an important driver.


1997 ◽  
Vol 12 (1) ◽  
pp. 5-8
Author(s):  
Gordon D. Nigh

Abstract The objective of this study was to determine whether the relationship between site index and early height growth of lodgepole pine (Pinus contorta var. latifolia) is the same on wet and dry sites. If the height growth/site index relationship is the same for different site types, then only one growth intercept model is required to estimate site index. Indicator variables in nonlinear regression were used to incorporate soil moisture availability into a growth intercept model. One set of parameters in a site index/early height growth model was adequate for both wet and dry sites. This result was supported graphically. Therefore, only one growth intercept model is necessary for the sites examined in this study. West. J. Appl. For. 12(1):5-8.


1975 ◽  
Vol 5 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Denis Lachance

Balsam fir growing on a site having two different soil moisture contents (the drier soil moisture content induced artificially) were inoculated with Odontiabicolor (Alb. & Schw. ex Fr.) Quél. It is shown that the fungus infected roots more readily than trunks, that trunk wounds at 137 cm (4.5 ft) above ground were as susceptible to infection as those at 30 cm (1 ft), and that infection percentages obtained 1 and 2 years after inoculation, although generally higher the second year, were not significantly different. Other fungi, commonly associated with discolored and decayed wood in balsam fir also infected the inoculation wounds, some more frequently root wounds (e.g. Coniophoraputeana, Trichoderma spp.), others trunk wounds (e.g. Retinocyclusabietis, Tympanis spp.). Amylostereumchailletii was isolated significantly more often from roots on wetter than drier soil conditions; Trichoderma spp. showed an opposite trend. O. bicolor apparently followed Graphium spp. at the infection site and was not affected by it as it grew into the wood. An apparent relationship also existed at the inoculation site between O. bicolor and Trichoderma spp.


2020 ◽  
Author(s):  
Bart Schilperoort ◽  
Miriam Coenders-Gerrits ◽  
Hubert Savenije

<p>One of the challenges of flux measurements above tall canopies, is that parts of the canopy can be decoupled from the atmosphere above. This decoupling can, for example, occur when the forest understory is colder than the air above, limiting exchange through convection. While concurrent above and below canopy eddy covariance (EC) measurements help with addressing the decoupling issue, these are still disconnected point measurements and do not show what is happening along the entire vertical profile. For this, Distributed Temperature Sensing (DTS) can give additional insights, as it can perform continuous temperature measurements along a vertically deployed fiber optic cable.</p><p>Measurements were performed at the ‘Speulderbos’ forest site in the Netherlands, where a 48 m tall measurement tower is located in a stand of 34 m tall Douglas Fir trees.  We measured a vertical temperature profile through the canopy using DTS (from the surface up to 32 m). The measurement frequency was ~0.5 Hz, with a vertical resolution 0.30 cm, and data was collected for two months. The fiber optic cable used had a diameter of 0.8 mm, allowing a sufficiently quick response to temperature changes. With this data we were able to detect the presence, height, and strength of inversions. The inversions appeared to occur mostly at night. The height of the inversion showed a bistable behavior, either staying around 1 m above the ground, or at approximately 16 m, which is just below the dense branches of the canopy.</p><p>By locating and tracking inversions within the canopy, decoupling events can be studied and explained in more detail. If vertical DTS profiles are available at a site, these can be used for filtering EC measurements as well. While more research will be needed before a wide application at flux sites is possible, this study can serve as a ‘proof-of-concept’ and demonstrates how vertical DTS profiles can help understand problematic flux sites.</p>


Sign in / Sign up

Export Citation Format

Share Document