The Role of Different Sources of Uncertainty in Data Assimilation with Coupled Land Surface - Subsurface Models

Author(s):  
Eduardo Emilio Sanchez-Leon ◽  
Natascha Brandhorst ◽  
Bastian Waldowski ◽  
Ching Pui Hung ◽  
Insa Neuweiler ◽  
...  

<p>The success of data assimilation systems strongly depends on the suitability of the generated ensembles. While in theory data assimilation should correct the states of an ensemble of models, especially if model parameters are included in the update, its effectiveness will depend on many factors, such as ensemble size, ensemble spread, and the proximity of the prior ensemble simulations to the data. In a previous study, we generated an ensemble-based data-assimilation framework to update model states and parameters of a coupled land surface-subsurface model. As simulation system we used the Terrestrial Systems Modeling Platform TerrSysMP, with the community land-surface model (CLM) coupled to the subsurface model Parflow. In this work, we used the previously generated ensemble to assess the effect of uncertain input forcings (i.e. precipitation), unknown subsurface parameterization, and/or plant physiology in data assimilation. The model domain covers a rectangular area of 1×5km<sup>2</sup>, with a uniform depth of 50m. The subsurface material is divided into four units, and the top soil layers consist of three different soil types with different vegetation. Streams are defined along three of the four boundaries of the domain. For data assimilation, we used the TerrsysMP PDAF framework. We defined a series of data assimilation experiments in which sources of uncertainty were considered individually, and all additional settings of the ensemble members matched those of the reference. To evaluate the effect of all sources of uncertainty combined, we designed an additional test in which the input forcings, subsurface parameters, and the leaf area index of the ensemble were all perturbed. In all these tests, the reference model had homogenous subsurface units and the same grid resolution as all models of the ensemble. We used point measurements of soil moisture in all data assimilation experiments. We concluded that precipitation dominates the dynamics of the simulations, and perturbing the precipitation fields for the ensemble have a major impact in the performance of the assimilation. Still, considerable improvements are observed compared to open-loop simulations. In contrast, the effect of variable plant physiology was minimal, with no visible improvement in relevant fluxes such as evapotranspiration. As expected, improved ensemble predictions are propagated longer in time when parameters are included in the update.</p>

2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


2010 ◽  
Vol 11 (5) ◽  
pp. 1103-1122 ◽  
Author(s):  
Rolf H. Reichle ◽  
Sujay V. Kumar ◽  
Sarith P. P. Mahanama ◽  
Randal D. Koster ◽  
Q. Liu

Abstract Land surface (or “skin”) temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) are assimilated into the Noah land surface model and Catchment land surface model (CLSM) using an ensemble-based, offline land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LSTs typically exhibit different mean values and variabilities. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation (“open loop”) are comparable to each other and superior to ISCCP retrievals. For LST, the RMSE values are 4.9 K (CLSM), 5.5 K (Noah), and 7.6 K (ISCCP), and the anomaly correlation coefficients (R) are 0.61 (CLSM), 0.63 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over an open loop, as indicated by nonoverlapping 95% confidence intervals) of up to 0.7 K in RMSE and 0.05 in the anomaly R. The skill of the latent and sensible heat flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.


2015 ◽  
Vol 8 (2) ◽  
pp. 295-316 ◽  
Author(s):  
D. Slevin ◽  
S. F. B. Tett ◽  
M. Williams

Abstract. This study evaluates the ability of the JULES land surface model (LSM) to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, gross primary productivity (GPP) estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so) were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET). Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI). Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.


2019 ◽  
Author(s):  
Xinxuan Zhang ◽  
Viviana Maggioni ◽  
Azbina Rahman ◽  
Paul Houser ◽  
Yuan Xue ◽  
...  

Abstract. Vegetation plays a fundamental role not only in the energy and carbon cycle, but also the global water balance by controlling surface evapotranspiration. Thus, accurately estimating vegetation-related variables has the potential to improve our understanding and estimation of the dynamic interactions between the water and carbon cycles. This study aims to assess to what extent a land surface model can be optimized through the assimilation of leaf area index (LAI) observations at the global scale. Two observing system simulation experiments (OSSEs) are performed to evaluate the efficiency of assimilating LAI through an Ensemble Kalman Filter (EnKF) to estimate LAI, evapotranspiration (ET), interception evaporation (CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). Results show that the LAI data assimilation framework effectively reduces errors in LAI simulations. LAI assimilation also improves the model estimates of all the water flux and storage variables considered in this study (ET, CIE, CWS, SSM, and TWS), even when the forcing precipitation is strongly positively biased (extremely wet condition). However, it tends to worsen some of the model estimated water-related variables (SSM and TWS) when the forcing precipitation is affected by a dry bias. This is attributed to the fact that the amount of water in the land surface model is conservative and the LAI assimilation introduces more vegetation, which requires more water than what available within the soil. Future work should investigate a multi-variate data assimilation system that concurrently merges both LAI and soil moisture (or TWS) observations.


2020 ◽  
Author(s):  
Michel Bechtold ◽  
Gabrielle De Lannoy ◽  
Rolf H Reichle ◽  
Dirk Roose ◽  
Nicole Balliston ◽  
...  

<p>Groundwater table depth and peat moisture, exert a first order control on a range of biogeochemical and -physical peatland processes, and the susceptibility to peat fires. Therefore, one of the first critical measures to identify “peatlands under pressure” is the change of hydrological conditions, e.g. due to changing climatic conditions or direct “hydraulic” human influence. In this presentation, we introduce a new opportunity for the global-scale monitoring of moisture conditions in peatlands. We assimilate L-band brightness temperature (Tb) data from the Soil Moisture Ocean Salinity (SMOS) into the Catchment land surface model (CLSM) to improve the simulation of Northern peatland hydrology from 2010 through 2019. We compare four simulation experiments: two open loop and two data assimilation simulations, either using the default CLSM or a recently-developed peatland-specific adaptation of it (PEATCLSM, Bechtold et al. 2019). The assimilation system uses a spatially distributed ensemble Kalman filter to update soil moisture and groundwater table depth. The simulation experiments are evaluated against an in-situ dataset of groundwater table depth in about 20 natural and semi-natural peatlands that are large enough to be dominant in the corresponding 81-km<sup>2</sup> model grid cells. For PEATCLSM, Tb data assimilation increases the temporal Pearson correlation (R) and anomaly correlation (aR) between simulated and measured groundwater table from 0.53 and 0.38 (open-loop) to 0.58 and 0.45 (analysis), respectively. Time series comparison at monitoring sites demonstrates how the assimilation effectively corrects for remaining deficiencies in model physics and/or errors of the global meteorological data forcing the model. The generally lower coefficients of 0.30 (R) and 0.09 (aR) for the default CLSM also improve after Tb data assimilation to values of 0.39 (R) and 0.28 (aR). However, even with Tb data assimilation, the skill of CLSM remains inferior to that of PEATCLSM. The more realistic model physics of PEATCLSM are also supported by a reduction of the Tb misfits (observed Tb – forecasted Tb) over 94 % of the Northern peatland area. The temporal variance of Tb misfits is reduced by 20 % on average and is largest over the large peatland areas of the Western Siberian (25 %) and Hudson Bay Lowlands (40 %). This study demonstrates, for the first time, an improved estimation of the peatland hydrological dynamics by the assimilation of SMOS L-band brightness data into a global land surface model and suggests a new route of research focusing on the incorporation of additional satellite observations into peatland-specific modeling schemes.</p><p>Bechtold, M., De Lannoy, G.J M., Koster, R.D., Reichle, R.H., et al. (2019). PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 11 (7), 2130-2162. doi: 10.1029/2018MS001574.</p>


2009 ◽  
Vol 6 (8) ◽  
pp. 1389-1404 ◽  
Author(s):  
A. Brut ◽  
C. Rüdiger ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
J.-C. Calvet ◽  
...  

Abstract. A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001–2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the interannual variability of LAI at a regional scale, is assessed with satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and two products are based on MODIS data. The comparison reveals discrepancies between the satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops than the satellite observations, which may be due to a saturation effect within the satellite signal or to uncertainties in model parameters. The simulated leaf onset presents a significant delay for C3 crops and mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.


2010 ◽  
Vol 11 (2) ◽  
pp. 509-519 ◽  
Author(s):  
Eleanor Blyth ◽  
John Gash ◽  
Amanda Lloyd ◽  
Matthew Pryor ◽  
Graham P. Weedon ◽  
...  

Abstract Surface energy flux measurements from a sample of 10 flux network (FLUXNET) sites selected to represent a range of climate conditions and biome types were used to assess the performance of the Hadley Centre land surface model (Joint U.K. Land Environment Simulator; JULES). Because FLUXNET data are prone systematically to undermeasure surface fluxes, the model was evaluated by its ability to partition incoming radiant energy into evaporation and how such partition varies with atmospheric evaporative demand at annual, seasonal, weekly, and diurnal time scales. The model parameters from the GCM configuration were used. The overall performance was good, although weaknesses in model performance were identified that are associated with the specification of the leaf area index and plant rooting depth, and the representation of soil freezing.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3924 ◽  
Author(s):  
Toride ◽  
Sawada ◽  
Aida ◽  
Koike

The assimilation of radiometer and synthetic aperture radar (SAR) data is a promising recent technique to downscale soil moisture products, yet it requires land surface parameters and meteorological forcing data at a high spatial resolution. In this study, we propose a new downscaling approach, named integrated passive and active downscaling (I-PAD), to achieve high spatial and temporal resolution soil moisture datasets over regions without detailed soil data. The Advanced Microwave Scanning Radiometer (AMSR-E) and Phased Array-type L-band SAR (PALSAR) data are combined through a dual-pass land data assimilation system to obtain soil moisture at 1 km resolution. In the first step, fine resolution model parameters are optimized based on fine resolution PALSAR soil moisture and moderate-resolution imaging spectroradiometer (MODIS) leaf area index data, and coarse resolution AMSR-E brightness temperature data. Then, the 25 km AMSR-E observations are assimilated into a land surface model at 1 km resolution with a simple but computationally low-cost algorithm that considers the spatial resolution difference. Precipitation data are used as the only inputs from ground measurements. The evaluations at the two lightly vegetated sites in Mongolia and the Little Washita basin show that the time series of soil moisture are improved at most of the observation by the assimilation scheme. The analyses reveal that I-PAD can capture overall spatial trends of soil moisture within the coarse resolution radiometer footprints, demonstrating the potential of the algorithm to be applied over data-sparse regions. The capability and limitation are discussed based on the simple optimization and assimilation schemes used in the algorithm.


2011 ◽  
Vol 8 (1) ◽  
pp. 1831-1877 ◽  
Author(s):  
A. L. Barbu ◽  
J.-C. Calvet ◽  
J.-F. Mahfouf ◽  
C. Albergel ◽  
S. Lafont

Abstract. The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI) product provided by an exponential filter together with Leaf Area Index (LAI) is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007), at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13% of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5% in terms of rms error is obtained.


2011 ◽  
Vol 8 (7) ◽  
pp. 1971-1986 ◽  
Author(s):  
A. L. Barbu ◽  
J.-C. Calvet ◽  
J.-F. Mahfouf ◽  
C. Albergel ◽  
S. Lafont

Abstract. The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI) product provided by an exponential filter together with Leaf Area Index (LAI) is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007), at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.


Sign in / Sign up

Export Citation Format

Share Document