Northward motion of the Burma Terrane alongside India during the Cenozoic.

Author(s):  
Jan Westerweel ◽  
Pierrick Roperch ◽  
Guillaume Dupont-Nivet ◽  
Alexis Licht ◽  
Nathan Cogne ◽  
...  

<p>Recent paleomagnetic data from early Late Cretaceous and late Eocene rocks from Myanmar (1,2) demonstrate that the Burma Terrane (BT) underwent an important northward translation alongside India in the Cenozoic. We present new paleomagnetic results from Paleocene to Eocene sediments that confirm the slightly southern to equatorial paleolatitudes during the Paleocene to mid Eocene. However, these paleomagnetic results imply a new paleogeography not compatible with the typical view of the geology of Myanmar as an andean-type margin above an active subduction of the Tethys/India oceanic crust below Sundaland.  Most previous models proposed an active subduction below Myanmar during the Paleogene but a slab anchored in the mantle would impede the large northward motion of the BT implied by our paleomagnetic data. We thus review the geology of the BT in light of the new latitudinal constraints provided by the paleomagnetic data. The BT contains >10km thick Cenozoic basins (Central Myanmar Basins (CMBs)) recording the Cenozoic geological evolution of the BT. The CMBs were previously interpreted with sediment sources located within the Myanmar magmatic arc and to the east in Sibumasu. The numerous studies on detrital zircons from the Late Cretaceous - Paleogene sediments  of  the CMBs highlight a clear correlation in the distribution of the ages of the pre-Cretaceous zircons (~40% of the zircons in the sediments) with the one from the Triassic turbidites (Pane Chaung Formation) of the Indo-Burman Ranges and the Triassic sediments from the Tethyan Himalaya (Langjiexue Fm.). Thus, the source of sediments is unlikely to be in Sibumasu but proposed to be in an actively eroding north-western extension of the Indo-Burman ranges (Greater Burma block, (2)) possibly linked to the Tethyan Himalaya and consistent with a BT position within the India plate during the Cenozoic. In any case, we find little evidence for a nearby active magmatic arc in the detrital zircon record supporting the hypothesis of an active subduction below the BT. Thus this review of the geology of the BT supports a rapid northward moving BT alongside India during the Cenozoic. We will discuss the implication of this new paleogeography on the India-Asia collision models.</p><p>(1) Westerweel et al. « Burma Terrane Part of the Trans-Tethyan Arc during Collision with India According to Palaeomagnetic Data ». Nature Geoscience 12, no 10 (octobre 2019): 863‑68. https://doi.org/10.1038/s41561-019-0443-2.</p><p>(2) Westerweel et al. « Burma Terrane Collision and Northward Indentation in the Eastern Himalayas Recorded in the Eocene‐Miocene Chindwin Basin (Myanmar) ». Tectonics 39, no 10 (octobre 2020). https://doi.org/10.1029/2020TC006413.</p>

2019 ◽  
Vol 36 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Carl E. Jacobson ◽  
César Jacques-Ayala ◽  
Andrew P. Barth ◽  
Juan Carlos García y Barragán ◽  
Jane N. Pedrick ◽  
...  

In the Caborca–Altar area of northwest Sonora, variably deformed and metamorphosed sedimentary and volcanic rocks crop out in a northwest-southeast–trending belt (El Batamote belt) at least 70 km long. We obtained detrital zircon U-Pb ages from two distinctive components of the belt near Altar, here termed the Altar complex and Carnero complex. Zircon ages for metasandstone and metaconglomerate matrix from the Altar complex indicate a Late Cretaceous maximum age of sedimentation, with at least part of the complex no older than 77.5 ± 2.5 (2σ). Pre-Cretaceous detrital zircons in the complex were derived largely from local sources, including Proterozoic basement, the Neoproterozoic–Cambrian miogeocline and the Jurassic arc. The detrital zircon ages and lithologic character of the Altar complex suggest correlation with the Escalante Formation, the uppermost unit of the Upper Cretaceous El Chanate Group. In contrast, one sample from the Carnero complex yielded a Middle Jurassic maximum depositional age and a detrital zircon age distribution like that of the Jurassic eolianites of the North American Cordillera. The Carnero complex may correlate with the Middle Jurassic Rancho San Martín Formation but could also be a metamorphosed equivalent of the Upper Jurassic Cucurpe Formation, Upper Jurassic to Lower Cretaceous Bisbee Group, or El Chanate Group derived by recycling of Jurassic erg sandstones. The Late Cretaceous age for the Altar complex protolith contradicts models that relate deposition of the entire El Batamote protolith to a basin formed by oblique slip along the Late Jurassic Mojave-Sonora megashear. Instead, the belt is best explained as an assemblage of Middle Jurassic to Upper Cretaceous formations deformed and locally metamorphosed beneath a northeast-directed Laramide thrust complex. Potassium-argon and 40Ar/39Ar ages confirm previous inferences that deformation of El Batamote belt occurred between the Late Cretaceous and late Eocene. A second phase of deformation, involving low-angle normal faults, occurred during and/or after intrusion of the ~22-21 Ma Rancho Herradura granodiorite.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
E. Dieudé-Fauvel ◽  
J.-C. Baudez ◽  
P. Coussot ◽  
H. Van Damme

In order to improve sewage sludge characterization for both dewatering and agricultural spreading, we have studied their electrical and rheological properties. On the one hand, electrical measurements give a picture of the microstructure of the material (charges, particles mobility), whereas on the other hand, rheological experiments describe its macrostructure (consistency). The interactions of the matter are the link between them. Our results showed that sludge becomes more conductive when its dry content (for a defined composition) or the temperature increases, and also during aging. In parallel its apparent viscosity increases with the dry content but decreases with the temperature or during aging. In each case a clear correlation was found between electrical and rheological parameters. This relationship clearly depends on sludge composition, and also on parameters such as the temperature, the observation frequency, the velocity range in the case of relaxation experiments. Finally, those types of experiments can be correlated to improve the comprehension of sludge structure and consistency characterization.


2021 ◽  
pp. 1-24
Author(s):  
Petros Koutsovitis ◽  
Konstantinos Soukis ◽  
Panagiotis Voudouris ◽  
Stylianos Lozios ◽  
Theodoros Ntaflos ◽  
...  

Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2018 ◽  
Vol 730 ◽  
pp. 100-113 ◽  
Author(s):  
Xin Dong ◽  
Ze-ming Zhang ◽  
Reiner Klemd ◽  
Zhen-yu He ◽  
Zuo-lin Tian

2022 ◽  
Author(s):  
Glenn R. Sharman ◽  
Daniel F. Stockli ◽  
Peter Flaig ◽  
Robert G. Raynolds ◽  
Marieke Dechesne ◽  
...  

ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.


Sign in / Sign up

Export Citation Format

Share Document