scholarly journals Ice shelf internal reflection horizons reveal ice provenance, dynamics, surface accumulation and oceanic melt

Author(s):  
Inka Koch ◽  
Reinhard Drews ◽  
Daniela Jansen ◽  
Steven Franke ◽  
Vjeran Visnjevic ◽  
...  

<p>Ice shelves are widely known to slow the transfer of Antarctic grounded ice to the ocean, especially if their flow is decelerated by local pinning points. Their longevity is influenced by variations in ice dynamics, surface accumulation and oceanic conditions in the ice shelf cavity. This is reflected in the ice shelf structure, which can be characterized by the shape of internal radar reflection horizons.</p><p>We aim to map the internal ice shelf stratigraphy of ice shelves, starting with the narrow belt of ice-shelves in the Dronning Maud Land area. The final goal will be to evaluate these as a spatiotemporal archive of ice provenance and ice dynamics. The bulk of the data presented here were collected with AWI’s airborne multi frequency ultra-wideband radar and we combine these new observations with airborne and ground-based radar surveys from previous years. We present a consistent set of internal radar isochrones on a catchment scale for the Roi Baudoin area including the Ragnhild ice streams, the grounding-zone, the iceshelf and multiple ice rises.  Using pattern matching technique we can link isochrones across different ice rises in the area, and hence provide first observational constraints on how ice rises jointly react to changes in atmospheric and oceanographic forcings. We also find a number of interesting features including dynamically induced dips in shear zones, truncating layers at the ice-shelf base, and the development of a meteoric ice layer distinguishing advected from newly accumulated ice in the iceshelf. The time series provided by radar observations over the last 10 years also offers the potential to map temporal changes. We use ice-flow modelling to provide age constraints for some internal layers and delineate portions within the shelf as a function of their advection history, hence marking areas of differing rheologies within the shelf. Taken together, this case study on a catchment scale is a primer to unravel the information stored in the isochronal stratigraphy of coastal Antarctica and contributes to international efforts (e.g., SCAR AntArchitecture)  of mapping stratigraphy on ice sheet scales.</p>


2012 ◽  
Vol 6 (3) ◽  
pp. 1715-1738 ◽  
Author(s):  
B. Scheuchl ◽  
J. Mouginot ◽  
E. Rignot

Abstract. We report changes in ice velocity of a 6.5 million km2 region around South Pole encompassing the Ronne/Filchner and Ross Ice Shelves and a significant portion of the ice streams and glaciers that constitute their catchment areas. Using the first full interferometric synthetic-aperture radar (InSAR) coverage of the region completed in 2009 and partial coverage acquired in 1997, we process the data to assemble a comprehensive map of ice velocity changes with a nominal precision of detection of ±3–4 m yr–1. The largest observed changes, an increase in speed of 100 m yr–1 in 12 yr, are near the frontal regions of the large ice shelves and are associated with the slow detachment of large tabular blocks that will eventually form icebergs. On the Ross Ice Shelf, our data reveal a slow down of Mercer and Whillans Ice Streams with a 12 yr velocity difference of 50 m yr–1 (16.7 %) and 100 m yr–1 (25.3 %) at their grounding lines. The slow down spreads 450 km upstream of the grounding line and more than 500 km onto the shelf, i.e., far beyond what was previously known. Also slowing in the Ross Ice Shelf sector are MacAyeal Ice Stream and Byrd Glacier with a 12 yr velocity difference near their grounding lines of 30 m yr–1 (6.7 %) and 35 m yr–1 (4.1 %), respectively. Bindschadler Ice Stream is faster by 20 m yr–1 (5 %). Most of these changes in glacier speed extend on the Ross Ice Shelf along the ice streams' flow lines. At the mouth of the Filchner/Ronne Ice Shelves, the 12 yr difference in glacier speed is below the 8 % level. We detect the largest slow down with a 12 yr velocity difference of up to 30 m yr–1 on Slessor and Recovery Glaciers, equivalent to 6.7 % and 3.3 %, respectively. Foundation Ice Stream shows a modest speed up (30 m yr–1 or 5 %). No change is detected on Bailey, Rutford, and Institute Ice Streams. On the Filchner Ice Shelf proper, ice slowed down rather uniformly with a 12 yr velocity difference of 50 m yr–1, or 5 % of its ice front speed, which we attribute to an 12 km advance in its ice front position. Overall, we conclude that the ice streams and ice shelves in this broad region, in contrast with their counterparts in the Amundsen and Bellingshausen seas, exhibit changes in ice dynamics that have almost no impact on the overall ice balance of the region.



2018 ◽  
Author(s):  
David M. Rippin

Abstract. We present the first direct measurements of changes taking place at the base of the Getz Ice Shelf (GzIS) in West Antarctica. Our analysis is based on repeated airborne radio-echo sounding (RES) survey lines gathered in 2010 and 2014. We reveal that while there is significant variability in ice shelf behaviour, the vast majority of the ice shelf (where data is available) is undergoing basal thinning at a mean rate of nearly 13 m a−1, which is several times greater than recent modelling estimates. In regions of faster flowing ice close to where ice streams and outlet glaciers join the ice shelf, significantly greater rates of mass loss occurred. Since thinning is more pronounced close to faster-flowing ice, we propose that dynamic thinning processes may also contribute to mass loss here. Intricate sub-ice circulation patterns exist beneath the GzIS because of its complex sub-ice topography and the fact that it is fed by numerous ice streams and outlet glaciers. It is this complexity which we suggest is also responsible for the spatially variable patterns of ice-shelf change that we observe. The large changes observed here are also important when considering the likelihood and timing of any potential future collapse of the ice shelf, and the impact this would have on the flow rates of feeder ice streams and glaciers, that transmit ice from inland Antarctica to the coast. We propose that as the ice shelf continues to thin in response to warming ocean waters and climate, the response of the ice shelf will be spatially diverse. Given that these measurements represent changes that are significantly greater than modelling outputs, it is also clear that we still do not fully understand how ice shelves respond to warming ocean waters. As a result, ongoing direct measurements of ice shelf change are vital for understanding the future response of ice shelves under a warming climate.



2018 ◽  
Author(s):  
Niall Gandy ◽  
Lauren J. Gregoire ◽  
Jeremy C. Ely ◽  
Christopher D. Clark ◽  
David M. Hodgson ◽  
...  

Abstract. Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. A valuable case to examine these processes is the last deglaciation of the British-Irish Ice Sheet. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British-Irish Ice Sheet during the last deglaciation, is well constrained, with abundant empirical data which could be used to inform, validate and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We simulate retreat from the shelf edge under constant "warm" surface mass balance and subshelf melt, to isolate the role of internal ice dynamics from external forcings. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at a "pinning-point" between mainland Scotland and the Isle of Lewis. At this stage, the presence of ice shelves became a major control on deglaciation, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch Strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the Marine Ice Sheet Instability and ice shelf buttressing during the deglaciation of parts of the British-Irish Ice Sheet. Thus, geological data could be used to constrain these processes in ice sheet models used for projecting the future of our contemporary ice sheets.



2010 ◽  
Vol 4 (4) ◽  
pp. 2079-2101 ◽  
Author(s):  
A. G. C. Graham ◽  
F. O. Nitsche ◽  
R. D. Larter

Abstract. The southern Bellingshausen Sea (SBS) is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice fronts in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.



2021 ◽  
Author(s):  
Vjeran Visnjevic ◽  
Reinhard Drews ◽  
Clemens Schannwell ◽  
Inka Koch

<p>Ice shelves buttress ice flow from the continent towards the ocean, and their disintegration results in increased ice discharge.  Ice-shelf evolution and integrity is influenced by surface accumulation, basal melting, and ice dynamics. We find signals of all of these processes imprinted in the ice-shelf stratigraphy that can be mapped using isochrones imaged with radar.</p><p>Our aim is to develop an inverse approach to infer ice shelf basal melt rates using radar isochrones as observational constraints. Here, we investigate the influence of basalt melt rates on the shape of isochrones using combined insights from both forward and inverse modeling. We use the 3D full Stokes model Elmer/Ice in our forward simulations, aiming to reproduce isochrone patterns observed in our data. Moreover we develop an inverse approach based on the shallow shelf approximating, aiming to constrain basal melt rates using isochronal radar data and surface velocities. Insights obtained from our simulations can also guide the collection of new radar data (e.g., profile lines along vs. across-flow) in a way that ambiguities in interpreting the ice-shelf stratigraphy can be minimized. Eventually, combining these approaches will enable us to better constrain the magnitude and history of basal melting, which will give valuable input for ocean circulation and sea level rise projections.</p>



2020 ◽  
Vol 117 (40) ◽  
pp. 24735-24741 ◽  
Author(s):  
Stef Lhermitte ◽  
Sainan Sun ◽  
Christopher Shuman ◽  
Bert Wouters ◽  
Frank Pattyn ◽  
...  

Pine Island Glacier and Thwaites Glacier in the Amundsen Sea Embayment are among the fastest changing outlet glaciers in West Antarctica with large consequences for global sea level. Yet, assessing how much and how fast both glaciers will weaken if these changes continue remains a major uncertainty as many of the processes that control their ice shelf weakening and grounding line retreat are not well understood. Here, we combine multisource satellite imagery with modeling to uncover the rapid development of damage areas in the shear zones of Pine Island and Thwaites ice shelves. These damage areas consist of highly crevassed areas and open fractures and are first signs that the shear zones of both ice shelves have structurally weakened over the past decade. Idealized model results reveal moreover that the damage initiates a feedback process where initial ice shelf weakening triggers the development of damage in their shear zones, which results in further speedup, shearing, and weakening, hence promoting additional damage development. This damage feedback potentially preconditions these ice shelves for disintegration and enhances grounding line retreat. The results of this study suggest that damage feedback processes are key to future ice shelf stability, grounding line retreat, and sea level contributions from Antarctica. Moreover, they underline the need for incorporating these feedback processes, which are currently not accounted for in most ice sheet models, to improve sea level rise projections.



2016 ◽  
Vol 10 (6) ◽  
pp. 2623-2635 ◽  
Author(s):  
Lionel Favier ◽  
Frank Pattyn ◽  
Sophie Berger ◽  
Reinhard Drews

Abstract. The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouin ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10 %, while omitting the same pinning point in data assimilation decreases it by 10 %, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. Pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.



1988 ◽  
Vol 11 ◽  
pp. 77-82 ◽  
Author(s):  
D. R. MacAyeal ◽  
R. A. Bindschadler ◽  
K. C. Jezek ◽  
S. Shabtaie

Configurations of relict surface-crevasse bands and medial moraines that emanate from the shear margins of ice streams are simulated, using a numerical model of an ideal rectangular ice shelf to determine their potential for recording a past ice-stream discharge chronology.



2020 ◽  
Vol 66 (260) ◽  
pp. 1064-1078
Author(s):  
Vikram Goel ◽  
Kenichi Matsuoka ◽  
Cesar Deschamps Berger ◽  
Ian Lee ◽  
Jørgen Dall ◽  
...  

AbstractIce rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.



1982 ◽  
Vol 3 ◽  
pp. 146-151 ◽  
Author(s):  
T. J. Hughes

It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.



Sign in / Sign up

Export Citation Format

Share Document