Experimental access to Volcanic Eruptions and their role in the Earth System. 

Author(s):  
Donald B. Dingwell

<p>Few things are more central to earth history, planetary evolution and the earth system, than volcanism. Explosive volcanism in particular exhibits individual events whose impact can range from local to global. Developing a mechanistic understanding of the inner workings of volcanic systems is essential for understanding their behavior and modelling their impact. Experiments form a fundamental part of our modern scientific approach to volcanic research, an approach which relies heavily on materials characterisation. In the year 2021, we can look back on decades of  novel and highly innovative experimental approaches applied to the investigation of volcanic processes. The focus has ranged from pre-eruptive and eruptive dynamics  all the way to the fate  and importance of volcanic materials in the Earth System. The applied aspects of the work reach, for example, into eruption forecasting, hazard mapping and aviation safety. I will attempt portray the the long term strategy of the approach we have taken as well as providing comments on the likelihood of certain further developments in the near future.</p>

2020 ◽  
Author(s):  
Donald B. Dingwell

<p>Volcanism, and its underlying magmatic origins, are key elements of the Earth System. Their central role can be summed up in the convention that a planet without volcanism is classified as dead. The scientific investigation of the origins, nature and impact of volcanic eruptions is currently one of the most vibrant areas of the solid earth sciences. Observation and quantification of volcanism is greatly assisted by its very nature which includes solid earth processes at the planetary surface and whose dynamics occur on observable timescales. Thus time and location work in our favour. Working against us however is the generally highly energetic, often highly violent, explosive nature of volcanism which frequently precludes deep access to eruptive processes during their operation. Here, the investigation of eruptive processes, together with their causes and consequences, has been greatly assisted by experimental approaches.</p><p>Highlights of the experimental investigation of volcanism have included the following:</p><p>1) The geochemical diversity of magma, together with its highly variable phase state, yield a very wide range of magmatic properties which form the basis for much of the variety of volcanic expression.</p><p>2) The eruptive products of volcanism present a wide range of types of information on the nature of volcano dynamics that can be calibrated with experimental methods.</p><p>3) The fate and influence of volcanic materials in the Earth System, whose investigation is often accessible via highly novel experiments,  provide a rich palette of impacts that have likely made the presence of volcanism on Earth a defining element in the atmosphere, hydrosphere, biosphere and elsewhere.</p><p>Experimental volcanology has a rich future...  </p>


2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2021 ◽  
Author(s):  
Mireia Mestre ◽  
Juan Höfer

<p>Despite being major players on the global biogeochemical cycles, microorganisms are generally not included in holistic views of Earth’s system. The Microbial Conveyor Belt is a conceptual framework that represents a recurrent and cyclical flux of microorganisms across the globe, connecting distant ecosystems and Earth compartments. This long-range dispersion of microorganisms directly influences the microbial biogeography, the global cycling of inorganic and organic matter, and thus the Earth system’s functioning and long-term resilience. Planetary-scale human impacts disrupting the natural flux of microorganisms pose a major threat to the Microbial Conveyor Belt, thus compromising microbial ecosystem services. Perturbations that modify the natural dispersion of microorganisms are, for example, the modification of the intensity/direction of air fluxes and ocean currents due to climate change, the vanishing of certain dispersion vectors (e.g., species extinction or drying rivers) or the introduction of new ones (e.g., microplastics, wildfires). Transdisciplinary approaches are needed to disentangle the Microbial Conveyor Belt, its major threats and their consequences for Earth´s system resilience.</p>


2019 ◽  
Vol 7 (1) ◽  
pp. 19-41 ◽  
Author(s):  
Frederic Hanusch ◽  
Frank Biermann

The Anthropocene as a new planetary epoch has brought to the foreground the deep-time interconnections of human agency with the earth system. Yet despite this recognition of strong temporal interdependencies, we still lack understanding of how societal and political organizations can manage interconnections that span several centuries and dozens of generations. This study pioneers the analysis of what we call “deep-time organizations.” We provide detailed comparative historical analyses of some of the oldest existing organizations worldwide from a variety of sectors, from the world’s oldest bank (Sveriges Riksbank) to the world’s oldest university (University of Al Quaraouiyine) and the world’s oldest dynasty (Imperial House of Japan). Based on our analysis, we formulate 12 initial design principles that could lay, if supported by further empirical research along similar lines, the basis for the construction and design of “deep-time organizations” for long-term challenges of earth system governance and planetary stewardship.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 412 ◽  
Author(s):  
Angelo De Santis ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
Leonardo Amoruso ◽  
Saioa A. Campuzano ◽  
...  

Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.


2010 ◽  
Vol 6 (S269) ◽  
pp. 254-268
Author(s):  
Paul Schenk

Galileo's imagination was quick to comprehend the importance of the 4 starry objects he observed near Jupiter in January 1610, not only for himself as a scientist but for our common understanding of the place of the Earth and our species in the cosmos. Even he, however, could not have imagined what those four objects would actually look like once humans got their first good look. Some 369 years the fast traveling Voyager 1 and 2 spacecraft provided that first good look during 1979, followed by an even closer look from the Galileo Orbiter beginning in 1996 through 2001. The following mosaics represent some of the best of those views. They include views of impact craters young and ancient, icy terrains that have been intensely faulted, eroded or disrupted, mountains towering 10 or more kilometers high, and volcanic eruptions hotter than those on Earth. Each of the four Galilean satellites is geologically distinct, betraying very diverse global histories and evolutions. Images and other observations of these 4 objects revealed the importance of tidal heating and subsurface water oceans in planetary evolution, but mapping is very incomplete. New missions to explore these planetary bodies are being planned and the images and observations of the missions that went before will lay the groundwork for these new explorations as we begin the 5th Galilean century.


2020 ◽  
Author(s):  
Gianfranco Cianchini ◽  

<p>Earthquakes, the most energetic phenomena in the lithosphere, often cause danger and casualties: thus, their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to offer a way to study the Earth system by viewing it as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior up to the ionosphere through the atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main aim is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that are introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.</p>


2018 ◽  
Vol 7 (1) ◽  
pp. 110
Author(s):  
Lihua Ma ◽  
Zhiqiang Yin ◽  
Yanben Han

Solar activity has been found to be strongly correlated with some geophysical processes on the Earth system. In the present paper, using global dust veil index of volcanic eruptions and sunspot numbers indicating solar activity, the authors investigate the possible influence of solar activity on global volcanicity during 1700–1995. Results of wavelet analysis indicate that variations of global volcanicity have remarkable temporal characteristics, and it is high related to solar activity on about 11-year cycle, with exceeding the 5% statistical significance level against red noise.


2018 ◽  
Author(s):  
Christoph Heinze ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
Colin Jones ◽  
Yves Balkanski ◽  
...  

Abstract. Earth system models (ESMs) are key tools for providing climate projections under different scenarios of human-induced forcing. ESMs include a large number of additional processes and feedbacks such as biogeochemical cycles that traditional physical climate models do not consider. Yet, some processes such as cloud dynamics and ecosystem functional response still have fairly high uncertainties. In this article, we present an overview of climate feedbacks for Earth system components currently included in state-of-the-art ESMs and discuss the challenges to evaluate and quantify them. Uncertainties in feedback quantification arise from the interdependencies of biogeochemical matter fluxes and physical properties, the spatial and temporal heterogeneity of processes, and the lack of long-term continuous observational data to constrain them. We present an outlook for promising approaches that can help quantifying and constraining the large number of feedbacks in ESMs in the future. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research (researchers, lecturers, and students). This study updates and significantly expands upon the last comprehensive overview of climate feedbacks in ESMs, which was produced 15 years ago (NRC, 2003).


2021 ◽  
Vol 13 (7) ◽  
pp. 3219-3237
Author(s):  
Jed O. Kaplan ◽  
Katie Hong-Kiu Lau

Abstract. Lightning is an important atmospheric phenomenon and has wide-ranging influence on the Earth system, but few long-term observational datasets of lightning occurrence and distribution are currently freely available. Here, we analyze global lightning activity over the second decade of the 21st century using a new global, high-resolution gridded time series and climatology of lightning stroke density based on raw data from the World Wide Lightning Location Network (WWLLN). While the total number of strokes detected increases from 2010–2014, an adjustment for detection efficiency reduces this artificial trend. The global distribution of lightning shows the well-known pattern of greatest density over the three tropical terrestrial regions of the Americas, Africa, and the Maritime Continent, but we also noticed substantial temporal variability over the 11 years of record, with more lightning in the tropics from 2012–2015 and increasing lightning in the midlatitudes of the Northern Hemisphere from 2016–2020. Although the total number of strokes detected globally was constant, mean stroke power decreases significantly from a peak in 2013 to the lowest levels on record in 2020. Evaluation with independent observational networks shows that while the WWLLN does not capture peak seasonal lightning densities, it does represent the majority of powerful lightning strokes. The resulting gridded lightning dataset (Kaplan and Lau, 2021a, https://doi.org/10.5281/zenodo.4774528) is freely available and will be useful for a range of studies in climate, Earth system, and natural hazards research, including direct use as input data to models and as evaluation data for independent simulations of lightning occurrence.


Sign in / Sign up

Export Citation Format

Share Document