Complex magmatic-tectonic interactions during the 2020 Makushin Volcano, Alaska, earthquake swarm

Author(s):  
Diana Roman ◽  
Federica Lanza ◽  
John Power ◽  
Cliff Thurber ◽  
Thomas Hudson

<p>We investigate the processes driving<strong> </strong>a significant earthquake swarm that occurred between June and December 2020 on Unalaska Island, Alaska, ~12 km southeast of the summit of Makushin Volcano. The swarm was energetic, with two M>4 events that were widely felt by the population in Dutch Harbor, ~ 15 km west of the epicenters. This is the strongest seismic activity ever recorded at Makushin since instrumental monitoring began in 1996. To date, no eruptive activity or other surface changes have been observed at the volcano in satellite views, webcam images, GPS or InSAR. Seismic swarms close to volcanoes are often associated with the onset of unrest that can lead to eruption. However, determining whether they reflect magmatic rather than tectonic stresses is challenging. Here, we integrate information from space-time patterns of the hypocenters of the swarm earthquakes with their double-couple fault-plane solutions (FPS). We relocate swarm events using double-difference relocation techniques and a 3D velocity model. We find that most of the events cluster into two perpendicular lineaments with NW-SE and SW-NE orientations, but no apparent migration in time towards a preferred fault. On the one hand, the lack of temporal migration (with both faults slipping concurrently), and FPS for M3+ events consistent with regional stresses, seem to indicate a tectonic driving process. On the other hand, FPS for the lower-magnitude earthquakes have 90°-rotated P-axes perpendicular to the regional principal stress orientation, providing strong evidence for dike inflation/magma intrusion. Coulomb stress modeling indicates that the rotated FPS are best explained by an inflating dike to the SW of the swarm epicenters, in a zone of long-term elevated seismicity. This complex overlapping of regional and magmatic stresses is also evident in the statistical analysis of the sequence, which started as a main-shock/aftershock sequence with the first event having the largest magnitude, and evolved into a swarm sequence indicative of a more pronounced role of magmatic processes.</p>

Author(s):  
P Papadimitriou ◽  
V Kapetanidis ◽  
A Karakonstantis ◽  
I Spingos ◽  
K Pavlou ◽  
...  

Summary The properties of the Mw = 6.7 earthquake that took place on 25 October 2018, 22:54:51 UTC, ∼50 km SW of the Zakynthos Island, Greece, are thoroughly examined. The main rupture occurred on a dextral strike-slip, low-angle, east-dipping fault at a depth of 12 km, as determined by teleseismic waveform modelling. Over 4000 aftershocks were manually analysed for a period of 158 days. The events were initially located with an optimal 1D velocity model and then relocated with the double-difference method to reveal details of their spatial distribution. The latter spreads in an area spanning 80 km NNW-SSE and ∼55 km WSW-ENE. Certain parts of the aftershock zone present strong spatial clustering, mainly to the north, close to Zakynthos Island, and at the southernmost edge of the sequence. Focal mechanisms were determined for 61 significant aftershocks using regional waveform modelling. The results revealed characteristics similar to the mainshock, with few aftershocks exhibiting strike-slip faulting at steeper dip angles, possibly related to splay faults on the accretionary prism. The slip vectors that correspond to the east-dipping planes are compatible with the long-term plate convergence and with the direction of coseismic displacement on the Zakynthos Island. Fault-plane solutions in the broader study area were inverted for the determination of the regional stress-field. The results revealed a nearly horizontal, SW-NE to E-W-trending S1 and a more variable S3 axis, favouring transpressional tectonics. Spatial clusters at the northern and southern ends of the aftershock zone coincide with the SW extension of sub-vertical along-dip faults of the segmented subducting slab. The mainshock occurred in an area where strike-slip tectonics, related to the Cephalonia Transform Fault and the NW Peloponnese region, gradually converts into reverse faulting at the western edge of the Hellenic subduction. Plausible scenarios for the 2018 Zakynthos earthquake sequence include a rupture on the subduction interface, provided the slab is tilted eastwards in that area, or the reactivation of an older east-dipping thrust as a low-angle strike-slip fault that contributes to strain partitioning.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


2019 ◽  
Vol 91 (1) ◽  
pp. 114-125 ◽  
Author(s):  
Natalia A. Ruppert ◽  
Avinash Nayak ◽  
Clifford Thurber ◽  
Cole Richards

Abstract The 30 November 2018 magnitude 7.1 Anchorage earthquake occurred as a result of normal faulting within the lithosphere of subducted Yakutat slab. It was followed by a vigorous aftershock sequence with over 10,000 aftershocks reported through the end of July 2019. The Alaska Earthquake Center produced a reviewed aftershock catalog with a magnitude of completeness of 1.3. This well‐recorded dataset provides a rare opportunity to study the relationship between the aftershocks and fault rupture of a major intraslab event. We use tomoDD algorithm to relocate 2038 M≥2 aftershocks with a regional 3D velocity model. The relocated aftershocks extend over a 20 km long zone between 47 and 57 km depth and are primarily confined to a high VP/VS region. Aftershocks form two clusters, a diffuse southern cluster and a steeply west‐dipping northern cluster with a gap in between where maximum slip has been inferred. We compute moment tensors for the Mw>4 aftershocks using a cut‐and‐paste method and careful selection of regional broadband stations. The moment tensor solutions do not exhibit significant variability or systematic differences between the northern and southern clusters and, on average, agree well with the mainshock fault‐plane parameters. We propose that the mainshock rupture initiated in the Yakutat lower crust or uppermost mantle and propagated both upward into the crust to near its top and downward into the mantle. The majority of the aftershocks are confined to the seismically active Yakutat crust and located both on and in the hanging wall of the mainshock fault rupture.


2016 ◽  
Vol 47 (3) ◽  
pp. 1269 ◽  
Author(s):  
O. Stavroulopoulou ◽  
E. Sokos ◽  
N. Martakis ◽  
G. A. Tselentis

A dense microseismic network was installed in Northwestern Greece for a period of eleven months. A total of 1368 events were recorded and located using a 1D model. These events were also used to derive a 3D velocity model for the area. This work presents results from further processing of the data using (a) simple location method of events in a 1D medium through Hypo71 standard procedure; (b) location via the probabilistic, non-linear earthquake location method in 3D medium; (c) relocation of the events using the Double - Difference method in 1D medium; and (d) the same relocation  procedure  invoking  3D  medium.  The  application  of  different  location methodologies results in slightly different locations, which are evaluated using as criterion the compactness of hypocenter distribution. The three point method was used in order to derive linear characteristics from the hypocenter distribution and the final results were compared against the focal mechanisms of the events as computed using the polarity method and the 3D velocity model. The combination of accurately computed hypocenters and focal mechanisms provides important information for the seismotectonics of Epirus


2020 ◽  
Vol 224 (3) ◽  
pp. 1835-1848
Author(s):  
M Bachura ◽  
T Fischer ◽  
J Doubravová ◽  
J Horálek

SUMMARY In earthquake swarms, seismic energy is released gradually by many earthquakes without a dominant event, which offers detailed insight into the processes on activated faults. The swarm of May 2018 that occurred in West Bohemia/Vogtland region included more than 4000 earthquakes with ML =〈0.5, 3.8&x3009 x232A;and its character showed significant changes during the two weeks duration: what started as a pure earthquake swarm ended as a typical main shock–aftershock sequence. Based on precise double-difference relocations, four fault segments differing in strikes and dips were identified with similar dimensions. First, two segments of typical earthquake swarm character took place, and at the end a fault segment hosting a main shock–aftershock sequence was activated. The differences were observable in the earthquakes spatio-temporal evolutions (systematic versus disordered migration of the hypocentres), b-values (>1.3 for the swarm, <1 for the main shock–aftershocks), or the smoothness of seismic moment spatial distribution along the fault plane. Our findings can be interpreted by local variations of fault rheology, differential stress and/or smoothness of the faults surface, possibly related to the crustal fluids circulating along the fault plane and their interplay with the seismic cycle.


2015 ◽  
Author(s):  
Hasbi Ash Shiddiqi ◽  
Sri Widiyantoro ◽  
Andri Dian Nugraha ◽  
Mohamad Ramdhan ◽  
Wandono ◽  
...  

2021 ◽  
Author(s):  
Ines Hamak ◽  
Piedade Wachilala ◽  
José Borges ◽  
Nuno Dias ◽  
Inês Rio ◽  
...  

<p><span>This work puts in light the several steps followed to obtain a 3D velocity model in Arraiolos, a region located in central Portugal. After the earthquake of January 2018 occurred, a set of stations were deployed around the main shock area and has recorded the aftershock sequence during a period of six months. </span></p><p><span>The first stage of this study used a set of data recorded along the 1</span><span><sup>st</sup></span><span> month by 21 temporary seismological stations. 317 aftershocks were used to invert a 3D P and S<span>  </span>velocity model, using LOTOS program, and showing an agglomeration of events in one local point leading to a poor resolution. Therefore, we added more stations and data to the second stage of study by integrating 437 aftershocks recorded during a period of 6 months by a set of 34 stations. The tomographic inversion of this extended aftershock sequence has shown a significant improvement of the 3D velocity model resolution and suggesting an alignment of the seismic events cluster. However, the imaged crustal volume was still too small and possessing low resolution on the edges of the area. To fix this issue, additional data and seismological stations were integrated to the study in order to increase the area of interest and cover it entirely in terms of ray density. </span></p><p><span>The step which we are currently conducting concerns the location of new events followed by their integration to the tomographic study using IPMA and DOCTAR station network records. Since the later phases PmP and SmS has the potential to increase the ray coverage as similarly as the resolution of an area, we will hopefully obtain, after their integration, significant improvements in terms of accuracy and reliability of the crustal image. The main purpose of this new stage of study is to finally provide significant interpretations and figure out precisely the tectonic processes having generated the Arraiolos seismicity. </span></p><p><span>Thanks are due to FCT for the financial support to the ICT project (UID/GEO/04683/2013) with the reference POCI-01- 0145-FEDER-007690, to the IDL project (UIDB/50019/2020 – IDL).</span></p>


1960 ◽  
Vol 50 (3) ◽  
pp. 347-388
Author(s):  
William Stauder

ABSTRACT Three earthquakes, two with previously determined fault-plane solutions, are selected in order to study the relation between the S waves and the source mechanism. The S waves are observed at favorable epicentral distances at stations distributed in all quadrants about the epicenter. The earthquakes are of a focal depth of 40 to 60 kilometers and belong to the aftershock sequence of the great earthquake of November 4, 1952. The direction of first motion and the plane of polarization of S are determined by the construction of particle-motion diagrams. In the case of the two earthquakes for which the fault-plane solutions have been published, no correspondence is found between the observed S wave data and the character of the S motion expected on the basis of the given nodal planes of P, whether the source be considered as a single couple or as a double couple. For the third earthquake it is found that the first motion of P is compressional along all rays leaving the focus downward and that the S waves are strongly SV polarized. No faulting mechanism can explain this distribution of the motion in the initial P and S phases. The motion is explained as corresponding to that generated by a simple force acting almost vertically downward. Graphical and analytical techniques of analysis determine the trend of the force at the source to be N 12° W, with a plunge of 85°. A reconsideration of the other two shocks shows that these, too, are better explained by a simple force source than by a faulting mechanism.


2020 ◽  
Author(s):  
Maria Mesimeri ◽  
Kristine Pankow ◽  
Ben Baker ◽  
Mark Hale

<p>In October 2019 an earthquake swarm initiated in the Mineral Mountains, Utah near the Roosevelt Hot Springs. The area has been characterized as swarm-genic after the recording of an energetic swarm (1044 microearthquakes, M less than 1.5) during the summer of 1981. This study primarily aims to investigate the spatio-temporal properties of the newly detected earthquake swarm and compare its occurrence to prior seismic activity. The October, 2019 earthquake swarm lasted four days and consists of forty-three shallow earthquakes that were cataloged by the University of Utah Seismograph Stations (UUSS) with magnitudes -0.7 to 1.31. All the events were recorded by a dense local broadband seismic network located around the Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah, ~10 km west of the activated area. The close proximity of the seismic network along with the density of the seismicity allows us to apply techniques for improving the detection level and earthquake location. To achieve this, we use the earthquakes detected by the UUSS as templates and scan the continuous data for new events by applying a matched filter technique. To perform a detailed spatial analysis of the earthquake swarm and look for migration patterns, we create a high-resolution earthquake catalog using a double difference technique and differential times from both catalog and cross correlation data. To gain insight into the stress regime, we compute fault plane solutions from first motions for individual events and composite focal mechanisms for families of similar events. We further attempt to explore the underlying mechanism by examining the presence of repeating earthquakes comprising the earthquake swarm and their relation to aseismic slip. Such observations may shed insights into the role of fluids and the influence of the high heat flow, due to the geothermal system, on earthquake triggering and migration.</p><p> </p>


2021 ◽  
Vol 9 ◽  
Author(s):  
David P. Sahara ◽  
Puput P. Rahsetyo ◽  
Andri Dian Nugraha ◽  
Devy Kamil Syahbana ◽  
Sri Widiyantoro ◽  
...  

This study provides an attempt to analyze the pre-eruptive seismicity events for volcano eruption forecasting. After more than 50 years of slumber, Agung volcano on Bali Island erupted explosively, starting on November 21, 2017. The eruption was preceded by almost 2 months of significant increase of recorded seismicity, herein defined as “seismic crisis.” Our study provides the first analysis of VT events using data from eight local seismic stations deployed by the Center for Volcanology and Geological Hazard Mitigation of Indonesia (CVGHM) to monitor the Agung Volcano activity. In total, 2,726 Volcano-Tectonic (VT) events, with 13,023 P waves and 11,823 S wave phases, were successfully identified between October 18 and November 30, 2017. We increased the accuracy of the hypocenter locations of these VT events using a double-difference (DD) relative relocation and a new velocity model appropriate to the subsurface geological conditions of Agung volcano. We found two types of seismicity during the recording period that represent the VT events relating to fracture network reactivation due to stress changes (during the seismic crisis) and magma intrusion (after the seismic crisis). The characteristics of each event type are discussed in terms of Vp/Vs values, phase delay times, seismic cluster shapes, and waveform similarity. We interpret that the upward migrating magma reached a barrier (probably a stiff layer) which prohibited further ascent. Consequently, magma pressurized the zone above the magma chamber and beneath the barrier, reactivated the fracture zone between Agung and Batur volcanoes, and caused the seismic crisis since September 2017. In early November 2017, the barrier was finally intruded, and magma and seismicity propagated toward the Agung summit. This reconstruction provides a better depth constraint as to the previous conceptual models and explains the long delay (∼10 weeks) between the onset of the seismic crisis and the eruption. The distinction between the fracture reactivation and magma intrusion VT events observed in this study is significant for eruption forecasting and understanding the subsurface structure of the magmatic system. Based on the results obtained in this study, we emphasize the importance of prompt analysis (location and basic seismic characteristics) of the seismic crisis preceding the Agung eruption.


Sign in / Sign up

Export Citation Format

Share Document