The October 2019 earthquake swarm in the Mineral Mountains, Utah and its relation to the geothermal system

Author(s):  
Maria Mesimeri ◽  
Kristine Pankow ◽  
Ben Baker ◽  
Mark Hale

<p>In October 2019 an earthquake swarm initiated in the Mineral Mountains, Utah near the Roosevelt Hot Springs. The area has been characterized as swarm-genic after the recording of an energetic swarm (1044 microearthquakes, M less than 1.5) during the summer of 1981. This study primarily aims to investigate the spatio-temporal properties of the newly detected earthquake swarm and compare its occurrence to prior seismic activity. The October, 2019 earthquake swarm lasted four days and consists of forty-three shallow earthquakes that were cataloged by the University of Utah Seismograph Stations (UUSS) with magnitudes -0.7 to 1.31. All the events were recorded by a dense local broadband seismic network located around the Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah, ~10 km west of the activated area. The close proximity of the seismic network along with the density of the seismicity allows us to apply techniques for improving the detection level and earthquake location. To achieve this, we use the earthquakes detected by the UUSS as templates and scan the continuous data for new events by applying a matched filter technique. To perform a detailed spatial analysis of the earthquake swarm and look for migration patterns, we create a high-resolution earthquake catalog using a double difference technique and differential times from both catalog and cross correlation data. To gain insight into the stress regime, we compute fault plane solutions from first motions for individual events and composite focal mechanisms for families of similar events. We further attempt to explore the underlying mechanism by examining the presence of repeating earthquakes comprising the earthquake swarm and their relation to aseismic slip. Such observations may shed insights into the role of fluids and the influence of the high heat flow, due to the geothermal system, on earthquake triggering and migration.</p><p> </p>

2021 ◽  
Author(s):  
Maria Mesimeri ◽  
Kristine Pankow ◽  
Ben Baker ◽  
J. Mark Hale

<p> The Mineral Mountains are located in south-central Utah within the transition zone from the Basin and Range to Colorado Plateau physiographic provinces, near the Roosevelt Hot Springs. First evidence of swarm-like activity in the area was found in 1981, when a six-station temporary network detected a very energetic swarm of ~1,000 earthquakes. More recently, in mid-2016, a dense local broadband seismic network was installed around the Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah, ~10 km west of the Mineral Mountains. Beginning in 2016, the University of Utah Seismograph Stations detected, located, and characterized 75 earthquakes beneath the Mineral Mountains. In this study, we build an enhanced earthquake catalog to confirm the episodic swarm-like nature of seismicity in the Mineral Mountains. We use the 75 cataloged earthquakes as templates and detect 1,000 earthquakes by applying a matched-filter technique. The augmented catalog reveals that seismicity in the Mineral Mountains occurs as short-lived earthquake swarms followed by periods of quiescence. Earthquake relocation of ~800 earthquakes shows that activity is concentrated in a <2 km long E-W striking narrow zone, ~4 km east of the Roosevelt hydrothermal system. Two fault orientations, both N-S and E-W parallel to the Opal Mound and Mag Lee faults, respectively, are observed after computing composite focal mechanisms of highly similar earthquakes. After examining the spatial and temporal patterns of the best recorded earthquake swarm in October 2019, we find that a complex mechanism of fluid diffusion and aseismic slip is responsible for the swarm evolution with migration velocities reaching 10 km/day. We hypothesize that these episodic swarms in the Mineral Mountains are primarily driven by migrating fluids that originate within the Roosevelt hydrothermal system.</p>


2021 ◽  
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita De Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network used to monitor natural and/or induced micro-seismicity estimates focal mechanisms as function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault-plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operated in the Campania-Lucania Apennines (Southern Italy) to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose can have a double purpose. It can be a valid tool to design or to test the performance of local seismic networks and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 65-83
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita de Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network, used to monitor natural and/or induced micro-seismicity, estimates focal mechanisms as a function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operating in the Campania–Lucania Apennines (southern Italy) aimed to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose is effective and can be adapted for other case studies with a double purpose. It can be a valid tool to design or to test the performance of local seismic networks, and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


2021 ◽  
Author(s):  
Diana Roman ◽  
Federica Lanza ◽  
John Power ◽  
Cliff Thurber ◽  
Thomas Hudson

<p>We investigate the processes driving<strong> </strong>a significant earthquake swarm that occurred between June and December 2020 on Unalaska Island, Alaska, ~12 km southeast of the summit of Makushin Volcano. The swarm was energetic, with two M>4 events that were widely felt by the population in Dutch Harbor, ~ 15 km west of the epicenters. This is the strongest seismic activity ever recorded at Makushin since instrumental monitoring began in 1996. To date, no eruptive activity or other surface changes have been observed at the volcano in satellite views, webcam images, GPS or InSAR. Seismic swarms close to volcanoes are often associated with the onset of unrest that can lead to eruption. However, determining whether they reflect magmatic rather than tectonic stresses is challenging. Here, we integrate information from space-time patterns of the hypocenters of the swarm earthquakes with their double-couple fault-plane solutions (FPS). We relocate swarm events using double-difference relocation techniques and a 3D velocity model. We find that most of the events cluster into two perpendicular lineaments with NW-SE and SW-NE orientations, but no apparent migration in time towards a preferred fault. On the one hand, the lack of temporal migration (with both faults slipping concurrently), and FPS for M3+ events consistent with regional stresses, seem to indicate a tectonic driving process. On the other hand, FPS for the lower-magnitude earthquakes have 90°-rotated P-axes perpendicular to the regional principal stress orientation, providing strong evidence for dike inflation/magma intrusion. Coulomb stress modeling indicates that the rotated FPS are best explained by an inflating dike to the SW of the swarm epicenters, in a zone of long-term elevated seismicity. This complex overlapping of regional and magmatic stresses is also evident in the statistical analysis of the sequence, which started as a main-shock/aftershock sequence with the first event having the largest magnitude, and evolved into a swarm sequence indicative of a more pronounced role of magmatic processes.</p>


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Saeko Kita

AbstractI relocated the hypocenters of the 2018 M6.7 Hokkaido Eastern Iburi earthquake and its surrounding area, using a three-dimensional seismic structure, the double-difference relocation method, and the JMA earthquake catalog. After relocation, the focal depth of the mainshock became 35.4 km. As previous studies show, in south-central Hokkaido, the Hidaka collision zone is formed, and anomalous deep and thickened forearc crust material is subducting at depths of less than 70 km. The mainshock and its aftershocks are located at depths of approximately 10 to 40 km within the lower crust of the anomalous deep and thickened curst near the uppermost mantle material intrusions in the northwestern edge of this Hidaka collision zone. Like the two previous large events, the aftershocks of this event incline steeply eastward and appear to be distributed in the deeper extension of the Ishikari-teichi-toen fault zone. The highly inclined fault in the present study is consistent with a fault model by a geodetic analysis with InSAR. The aftershocks at depths of 10 to 20 km are located at the western edge of the high-attenuation (low-Qp) zone. These kinds of relationships between hypocenters and materials are the same as the 1970 and 1982 events in the Hidaka collision zone. The anomalous large focal depths of these large events compared with the average depth limit of inland earthquakes in Japan could be caused by the locally lower temperature in south-central Hokkaido. This event is one of the approximately M7 large inland earthquakes that occurred repeatedly at a recurrence interval of approximately 40 years and is important in the collision process in the Hidaka collision zone.


Author(s):  
P Papadimitriou ◽  
V Kapetanidis ◽  
A Karakonstantis ◽  
I Spingos ◽  
K Pavlou ◽  
...  

Summary The properties of the Mw = 6.7 earthquake that took place on 25 October 2018, 22:54:51 UTC, ∼50 km SW of the Zakynthos Island, Greece, are thoroughly examined. The main rupture occurred on a dextral strike-slip, low-angle, east-dipping fault at a depth of 12 km, as determined by teleseismic waveform modelling. Over 4000 aftershocks were manually analysed for a period of 158 days. The events were initially located with an optimal 1D velocity model and then relocated with the double-difference method to reveal details of their spatial distribution. The latter spreads in an area spanning 80 km NNW-SSE and ∼55 km WSW-ENE. Certain parts of the aftershock zone present strong spatial clustering, mainly to the north, close to Zakynthos Island, and at the southernmost edge of the sequence. Focal mechanisms were determined for 61 significant aftershocks using regional waveform modelling. The results revealed characteristics similar to the mainshock, with few aftershocks exhibiting strike-slip faulting at steeper dip angles, possibly related to splay faults on the accretionary prism. The slip vectors that correspond to the east-dipping planes are compatible with the long-term plate convergence and with the direction of coseismic displacement on the Zakynthos Island. Fault-plane solutions in the broader study area were inverted for the determination of the regional stress-field. The results revealed a nearly horizontal, SW-NE to E-W-trending S1 and a more variable S3 axis, favouring transpressional tectonics. Spatial clusters at the northern and southern ends of the aftershock zone coincide with the SW extension of sub-vertical along-dip faults of the segmented subducting slab. The mainshock occurred in an area where strike-slip tectonics, related to the Cephalonia Transform Fault and the NW Peloponnese region, gradually converts into reverse faulting at the western edge of the Hellenic subduction. Plausible scenarios for the 2018 Zakynthos earthquake sequence include a rupture on the subduction interface, provided the slab is tilted eastwards in that area, or the reactivation of an older east-dipping thrust as a low-angle strike-slip fault that contributes to strain partitioning.


2021 ◽  
Author(s):  
Caroline Chalumeau ◽  

<p>Repeating earthquakes are earthquakes that repeatedly break a single, time-invariant fault patch. They are generally associated with aseismic slip, which is thought to load asperities, leading to repeated rupture. Repeating earthquakes are therefore useful tools to study aseismic slip and fault mechanics, with possible applications to earthquake triggering, loading rates and earthquake forecasting.</p><p>In this study, we analyze one year of aftershocks following the 16<sup>th</sup> April 2016 Mw 7.8 Pedernales earthquake in Ecuador to find repeating families, using data recorded by permanent and temporary seismological stations. In our area, seismicity during both the inter-seismic and post-seismic periods has been previously linked to aseismic slip. We calculate waveform cross-correlation coefficients (CC) on all available catalogue events, which we use to sort events into preliminary families, using a minimum CC of 0.95. These events were then stacked and used to perform template-matching on the continuous data. In total, 376 earthquakes were classified into 62 families of 4 to 15 earthquakes, including 8 from the one-year period before the mainshock. We later relocated these earthquakes using a double-difference method, which confirmed that most of them did have overlapping sources.</p><p>Repeating earthquakes seem to concentrate largely around the areas of largest afterslip release, where afterslip gradient is the highest. We also find an increase in the recurrence time of repeating events with time after the mainshock, over the first year of the postseismic period, which highlights a possible timeframe for the afterslip’s deceleration. Our results suggest that while most repeating aftershocks are linked to afterslip release, the afterslip gradient may play a bigger role in determining their location than previously thought.</p>


2018 ◽  
Vol 175 (6) ◽  
pp. 1997-2008 ◽  
Author(s):  
Lucia Fojtíková ◽  
Václav Vavryčuk

Abstract We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003–2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012–2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003–2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012–2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003–2004 swarm and of 13 strongest events of the 2012–2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of ~ 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2–0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.


2018 ◽  
Vol 37 (2) ◽  
pp. 626-645
Author(s):  
Wei Zhang ◽  
Guiling Wang ◽  
Linxiao Xing ◽  
Tingxin Li ◽  
Jiayi Zhao

The geochemical characteristics of geothermically heated water can reveal deep geothermal processes, leading to a better understanding of geothermal system genesis and providing guidance for improved development and utilization of such resources. Hydrochemical and hydrogen oxygen isotope analysis of two geothermal field (district) hot springs based on regional geothermal conditions revealed that the thermal water in the Litang region is primarily of the HCO3Na type. The positive correlations found between F−, Li2+, As+, and Cl− indicated a common origin, and the relatively high Na+ and metaboric acid concentrations suggested a relatively long groundwater recharge time and a slow flow rate. The values of δD and δ18O were well distributed along the local meteoric line, indicating a groundwater recharge essentially driven by precipitation. The thermal reservoir temperature (152°C–195°C) and thermal cycle depth (3156–4070 m) were calculated, and the cold water mixing ratio (60%–68%) was obtained using the silica-enthalpy model. Finally, hydrogeochemical pathway simulation was used to analyze the evolution of geothermal water in the region. The results were further supported by the high metasilicate content in the region. Of the geothermal fields in the region, it was found that the Kahui is primarily affected by albite, calcite precipitation, and silicate, while the Gezha field is primarily affected by calcite dissolution, dolomite precipitation, and silicate.


Sign in / Sign up

Export Citation Format

Share Document