Relative impacts of climate change and anthropogenic forcing on karst spring discharge forecasting of a Mediterranean catchment

Author(s):  
Vianney Sivelle ◽  
Hervé Jourde ◽  
Daniel Bittner ◽  
Naomi Mazzilli ◽  
Yves Tramblay

<p>The Mediterranean region is identified as a climate change hotspot, where future scenarios indicate an increase of temperature associated with a decrease of precipitation. Providing future scenarios of water resource availability considering both climate and anthropogenic changes on karst catchments remains a major challenge for hydrological sciences. The study concerns the Oeillal spring, which is one outlet of the karst catchment associated with the Fonfroide-Monredon massif (southern France), mainly composed by Jurassic limestones. We assess the relative effects of climate changes and anthropogenic forcing on the karst spring discharge by coupling 12 climate model simulations (GCM/RCM) under two emission scenarios (RCP 4.5 and RCP 8.5) with 3 hydrological models and considering 4 scenarios of groundwater abstraction for drinking water supply (no abstraction, present-day abstraction, +50 % abstraction and +100 % abstraction at horizon 2100).  We find that climate change has a major effect on the future evolution of the Oeillal spring’s discharge and that groundwater abstraction constitutes a secondary but non-negligible factor, which increases the occurrence of dry up of the Oeillal spring.</p>

2019 ◽  
Vol 27 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Emma J. Windfeld ◽  
James D. Ford ◽  
Lea Berrang-Ford ◽  
Graham McDowell

Community-level vulnerability assessments (VAs) are important for understanding how populations experience vulnerabilities to climate change in different ways given local socioeconomic and environmental factors. Despite recent expansion in the literature that evaluates vulnerability at the local level, approaches to understanding future scenarios and to integrating climatic and nonclimatic factors are inconsistent and often lack clear methodological information. This study utilized systematic review methods to characterize and compare future scenarios and the integration of climatic and nonclimatic stimuli in community-focused VAs published over the last five years. Five common methods for assessing future dimensions of vulnerability were characterized. Key challenges regarding sources and scales of information were highlighted alongside methods to integrate data spanning climatic and nonclimatic information at scales ranging from local to global. The majority of VAs considered current and past vulnerability; few VAs incorporated future scenarios and these studies focused on future climatic conditions while largely overlooking changes in nonclimatic drivers of vulnerability. Approaches to evaluate future dimensions of vulnerability included climate model projections, socioeconomic model projections, temporal analogue approaches, longitudinal approaches, and local perceptions. These methods often failed to capture the dynamic interactions between variables through time, as future impacts are unlikely to follow previous patterns of change. To combine datasets of different scales, VAs created vulnerability indices, overlaid spatial datasets, or used expert judgement. These approaches tended to aggregate local characteristics to the regional level at the expense of community specificity. There is a need for methodological advances to assess future scenarios and to combine datasets in the field of community-level climate change VAs to make these studies more responsive to local realities and relevant to the development of climate change adaptation strategies.


2011 ◽  
Vol 68 (6) ◽  
pp. 1051-1062 ◽  
Author(s):  
Barbara A. Muhling ◽  
Sang-Ki Lee ◽  
John T. Lamkin ◽  
Yanyun Liu

Abstract Muhling, B. A., Lee, S-K., Lamkin, J. T., and Liu, Y. 2011. Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. – ICES Journal of Marine Science, 68: 1051–1062. Atlantic bluefin tuna (BFT) is a highly migratory species that feeds in cold waters in the North Atlantic, but migrates to tropical seas to spawn. Global climate-model simulations forced by future greenhouse warming project that upper-ocean temperatures in the main western Atlantic spawning ground, the Gulf of Mexico (GOM), will increase substantially, potentially altering the temporal and spatial extent of BFT spawning activity. In this study, an ensemble of 20 climate model simulations used in the Intergovernmental Panel for Climate Change fourth Assessment Report (IPCC-AR4) predicted mean temperature changes within the GOM under scenario A1B through to 2100. Associations between adult and larval BFT in the GOM and sea temperatures were defined using 20th century observations, and potential effects of warming on the suitability of the GOM as a spawning ground were quantified. Areas in the GOM with high probabilities of larval occurrence decreased in late spring by 39–61% by 2050 and 93–96% by the end of the 21st century. Conversely, early spring may become more suitable for spawning. BFT are therefore likely to be vulnerable to climate change, and there is potential for significant impacts on spawning and migration behaviours.


2021 ◽  
Author(s):  
Clemens Schwingshackl ◽  
Anne Sophie Daloz ◽  
Carley Iles ◽  
Nina Schuhen ◽  
Jana Sillmann

<p>Cities are hotspots of human heat stress due to their large number of inhabitants and the urban heat island effect leading to amplified temperatures. Exposure to heat stress in urban areas is projected to further increase in the future, mainly due to climate change and expected increases in the number of people living in cities. The impacts of climate change in cities have been investigated in numerous studies, but rarely using climate models due to their coarse spatial resolution compared to the typical areal extent of cities. Recent advances in regional climate modelling now give access to an ensemble of high-resolution simulations for Europe, allowing for much more detailed analyses of small-scale features, such as city climate.</p><p>Focusing on Europe, we compare the evolution of several heat stress indicators for 36 major European cities, based on regional climate model simulations from EURO-CORDEX. The applied EURO-CORDEX ensemble (Vautard et al., 2020) has a spatial resolution of 0.11° (~11 km; comparable to the extent of large cities) and contains over 60 ensemble members, allowing thus for robust multi-model analyses of climate change on city levels. We analyze changes in heat stress both relative to the climatological heat stress variability in each city during 1981-2010 using the Heat Wave Magnitude Index daily (HWMId, Russo et al., 2015) and in absolute terms by counting the yearly number of exceedances of impact-relevant thresholds. Relative and absolute heat stress increase throughout Europe but with distinct patterns. Absolute heat stress increases predominantly in Southern Europe, primarily due to the hotter climate in the South. Relative changes are also highest in Southern Europe but exhibit a secondary maximum in Northern Europe, while being lowest in Central Europe. The main reason for this pattern is that day-to-day variability in heat stress indicators during present climate conditions is highest in Central Europe but lower in Southern and Northern Europe. Large Northern European cities, which are all located at the shore, are further influenced by different heat stress evolutions over land and sea surfaces.</p><p>As human vulnerability does not only depend on the absolute heat stress but also on what people are adapted to (i.e., the climatological range), the results of this study highlight that cities in all parts of Europe – including in Northern Europe – must prepare for higher heat stress in the future.</p><p> </p><p>References:</p><p>Russo, S., et al. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12). doi:10.1088/1748-9326/10/12/124003</p><p>Vautard, R., et al. (2020). Evaluation of the large EURO‐CORDEX regional climate model ensemble. Journal of Geophysical Research: Atmospheres. doi:10.1029/2019jd032344</p>


2021 ◽  
Author(s):  
Katinka Bellomo ◽  
Michela Angeloni ◽  
Susanna Corti ◽  
Jost von Hardenberg

<div> <div> <div> <p>In climate model simulations of future climate change, the Atlantic Meridional Overturning Circulation (AMOC) is projected to decline. However, the impacts of this decline, relative to other changes, remain to be identified. Here we address this problem by analyzing 30 idealized abrupt-4xCO2 climate model simulations. We find that in models with larger AMOC decline, there is a minimum warming in the North Atlantic, a southward displacement of the Inter-tropical Convergence Zone (ITCZ) and a poleward shift of the mid-latitude jet. The changes in the models with smaller AMOC decline are drastically different: there is a relatively larger warming in the North Atlantic, the precipitation response exhibits a wet-get-wetter, dry-get-drier pattern, and there are smaller displacements of the mid-latitude jet. Our study indicates that the AMOC is a major source of inter-model uncertainty, and continued observational efforts are needed to constrain the AMOC response in future climate change.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Sebastian Bathiany ◽  
Diana Rechid ◽  
Susanne Pfeifer ◽  
Juliane El Zohbi ◽  
Klaus Goergen ◽  
...  

<p>Agriculture is among the sectors that are most vulnerable to extreme weather conditions and climate change. In Germany, the subsequent dry and hot summers 2018, 2019, and 2020 have brought this into the focus of public attention. Agricultural actors like farmers, advisors or companies are concerned with such interannual variability and extremes. Yet, it often remains unclear what long-term adaptation options are most suitable in the context of climate change, mainly because climate projections have uncertainties and are usually not tailored to meet requirements, measures and scales of the individual practicioners. In the ADAPTER project, we explore regional and local change on the weather- and climate-related time scales and together with stakeholders (administration, plant breeders, educators, agricultural advisors), we co-design tailored climate change indices and usable products.</p><p>In this contribution, we provide a snapshot view of our stakeholders' requirements regarding information about climate change over the next decades. We then focus on the analysis of three groups of indices based on 85 regional climate model simulations from Coordinated Downscaling Experiments over Europe - EURO-CORDEX: (i) changes in daily temperature variability, (ii) occurrence of agricultural droughts in summer, (iii) compound events of combined dryness and elevated temperatures during the same events. We show that these user-oriented, newly constructed indices can capture relevant changes during important phenological development states of typical crops. Finally, we discuss first implications of our findings for different adaptation strategies in Mid-Europe, such as alternating crop rotations, irrigation strategies or plant breeding. The analysis products presented are interactively and publicly available through a product platform (www.adapter-projekt.de) for agricultural stakeholders.</p>


Sign in / Sign up

Export Citation Format

Share Document