Slow slip events along the North Anatolian Fault

Author(s):  
Romain Jolivet ◽  
Bertrand Rouet-Leduc ◽  
Jorge Jara ◽  
Manon Dalaison ◽  
Claudia Hulbert ◽  
...  

<p>While some faults remain locked for tens to hundreds of years, some active faults slip slowly, either continuously or episodically. The discovery of slow, generally silent, slip at the turn of the century led to a profound modification of our understanding of the mechanics of faulting, shedding light on the dynamics of fault slip. Such dynamics areis controlled by the past history of stress along the fault plane (i.e. historical ruptures), fluids circulating in the crust and the rheology of the crust and fault plane. Understanding the influence of these different factors requires dense observations, as suggested by the large range of spatial and temporal scales involved in the control of the slip velocity along a fault. Specifically, the smallest scales of slow slip have beenwere inferred by the observation of tremors or low frequency events, interpreted as the chatter of a fault plane while it slips slowly. We are missing direct observations of such kilometer-scale slow slip events and continental creeping faults are an obvious target for such observationsfor such observations.</p><p> </p><p>Aseismic slip along the North Anatolian Fault was recognized in the 1960’s by the observation of offset man-made features without earthquakes recorded. Following these early observations, multiple geodetic studies focused on recording aseismic slip and analyzed the average rate of shallow slow slip in the vicinity of the town of Ismetpasa. GPS, InSAR and creepmeter data all converge toward an aseismic slip rate reaching 1 cm/yr in places, with significant along- strike variations. Furthermore, earlyHowever, creepmeter measurements in the 80’s, confirmed by records from a more recent instrument, suggest aseismic slip is currently episodic, occurring in bursts of slip. Recent InSAR data from the Cosmo-SkyMed constellation captured a month-long slow slip event with a maximum of 2 cm/yr of slip.</p><p> </p><p>We propose to analyze the geodetic record to search for slow slip events over the 2015-2020 period. We take advantage of a dense network of continuous GNSS stations installed in 2017 and of time series of Sentinel 1 SAR data to identify at least 3 slow slip events along the North Anatolian Fault. Thanks to the dense temporal sampling of the GNSS records, we describe faithfullyobserve the onset of slow slip. We use a deep learning algorithm to extract the surface signature of the slow slip events from the InSAR time series, highlighting a slow rupture front propagating along strike. We compare the occurrences of slow slip events with the local fault geometry, the average distribution of kinematic coupling and the historical seismicity. We discuss the mechanical implications of such detailed description of slow slip along an active fault. In conclusion, while slow slip rate averaged over periods longer than 2-3 years seems constant over the last 40 years, identification of slow slip events suggests this apparently constant rate results from slow slip events over multiple spatial and temporal scales.</p>

2020 ◽  
Author(s):  
Jorge Jara ◽  
Alpay Ozdemir ◽  
Angelique Benoit ◽  
Romain Jolivet ◽  
Ziyadin Çakir ◽  
...  

<p>Many geodetic evidence suggest aseismic slip along active faults is more common than previously thought. Furthermore, aseismic slip during the interseismic period seems to be made of intermittent slow slip events, corresponding to episodes of loading and releasing of tectonic stress over time. However, although our capabilities of detection and location of aseismic deformation have significantly increased together with the growth in available geodetic data, the physical mechanisms governing slow slip remain unknown.</p><p>We explore the spatial and temporal behavior of aseismic deformation in the vicinity of the small town of Ismetpasa, located along the central section of the North Anatolian Fault (Turkey). We combine InSAR and GNSS data acquired over the last 10 years to locate and quantify aseismic slip in the subsurface. We process SAR images (ALOS and Sentinel-1) acquired from 2007 to 2018 to build time series of ground deformation and maps of ground velocity. We confirm the presence of a 100 km-long creeping section, at rates of 10-20 mm/yr. Along this section, slip is not constant and decreases over time as formerly observed over the last 60 years. Furthermore, via a detailed analysis of our geodetic time series, we detect 3 major episodes of aseismic slip between 2015 and 2018, with durations ranging from 6 months to 1 year and magnitudes between 4.6 - 5.2. These results are compared with time series obtained from a network of GNSS permanent stations we have installed in the region (17 stations, period 2016 - 2019). As a conclusion, aseismic slip along this section of the North Anatolian Fault is characterized by slow slip events rather than by a constant, steady-state aseismic slip rate. We discuss the potential implications in terms of mechanics of slow slip along the NAF.</p>


2020 ◽  
Author(s):  
Alpay Özdemir ◽  
Uğur Doğan ◽  
Jorge Jara ◽  
Ziyadin Çakır ◽  
Romain Jolivet ◽  
...  

<p>Twenty six years after the Mw 7.3 Gerede Earthquake in1944, Ambraseys (1970) first recognized, in the offset of a manmade wall, the signature of slow aseismic slip along the central segment of the North Anatolian Fault (NAF). Following this discovery, many studies characterized the behavior of aseismic slip with land-and space-based geodetic techniques, including creepmeters. It is now well recognized that the aseismic slip rate decreases logarithmically from more than 3 cm/yr in the years following the Gerede Earthquake to approximately 6±2 mm/yr today. In the last two decades, InSAR allowed deriving maps of ground velocities suggesting that aseismic slip extends along a 100-km-long section of the fault. Furthermore, aseismic slip rate varies in space along strike, reaching its peak value approximately 15-24 km east of the city of Ismetpasa. Furthermore, creepmeter measurements and InSAR time series indicate that aseismic slip in the region of Ismetpasa behaves episodically rather than continuously, alternating quiescent periods and transient episodes of relatively rapid aseismic slip. These observations raise questions about how slip accommodates tectonic stress along the fault with significant implications in terms of hazard along the seismogenic zone.</p><p> </p><p>In order to monitore spatial and temporal variations in the aseismic slip rate and to detect slow slip events along the fault, we have established ISMENET -Ismetpasa Continuous GNSS Network- in July 2016. ISMENET stations are distributed over approximately 120 km along strike. In order to explore the shallow, fine spatio-temporal behavior of aseismic slip, stations are located within 200 m to 10 km of the fault. We process GNSS data with the Bernese (V5.2) and GAMIT/GLOBK (V10.7) GNSS software. We analyze the GNSS time series to extract the signature of aseismic slip using a principal component analysis to reduce the influence of non-tectonic noises.</p><p> </p><p>Keywords: Ismetpasa, Aseismic slip, GNSS, PCA, Time Series Analysis, NAFZ</p>


2021 ◽  
Author(s):  
Alpay Özdemir ◽  
Uğur Doğan ◽  
Jorge Jara ◽  
Romain Jolivet ◽  
Semih Ergintav ◽  
...  

<p>Twenty six years after the Mw 7.3 Bolu/Gerede Earthquake of 1944, Ambraseys (1970) first recognized, in the offset of a manmade wall constructed across the fault in 1957, the signature of slow aseismic slip along the central segment of the North Anatolian Fault (NAF). Following this discovery, many studies have characterized the behaviour of this aseismic slip with land- and space-based geodetic techniques, and with creepmeters. It is now recognized that the rate of aseismic slip decreases logarithmically from more than 3 cm/yr in the years following the Gerede Earthquake to approximately 6±2 mm/yr today. Of this rate, approximately 1.2 mm/year is residual afterslip and the remainder appears to be linear creep interrupted by creep events. In the last two decades, InSAR allowed the derivation of maps of ground velocities that indicates aseismic slip extends along a 100-km-long section of the fault, with a spatially variable aseismic slip rate, reaching its peak value approximately 15-24 km east of the city of Ismetpasa. Furthermore, creepmeter measurements and InSAR time series indicate that surface aseismic slip in the region of Ismetpasa is largely episodic, alternating between quiescent periods and transient episodes of relatively rapid aseismic slip. These observations raise questions about how slip accommodates tectonic stress along the fault with significant implications in terms of hazard along the seismogenic zone.</p><p> In July 2016, we established ISMENET (Ismetpasa Continuous GNSS Network) to monitor spatial and temporal variations in the aseismic slip rate and detect slow slip events along the fault. ISMENET stations are distributed along 120 km long segment of the fault. In order to explore the shallow, fine spatio-temporal behavior of aseismic slip, 19 stations are located within 200 m to 10 km of the fault with 30 and 1 sec sampling rate. We analysed the GNSS time series to extract the signature of aseismic slip using a principal component analysis to reduce the influence of non-tectonic noise. We compared results with creep events quantified by creepmeters.</p><p>Keywords: Ismetpasa, Aseismic slip, GNSS, PCA, Time Series Analysis, NAFZ</p>


2019 ◽  
Vol 219 (3) ◽  
pp. 2074-2096 ◽  
Author(s):  
Kazuro Hirahara ◽  
Kento Nishikiori

Summary A variety of slow slip events at subduction zones have been observed. They can be stress meters for monitoring the stress state of megathrust faults during their earthquake cycles. In this study, we focus on long-term slow slip events (LSSEs) recurring at downdip portions of megathrust faults among such slow earthquakes. Data analyses and simulation studies of LSSEs have so far been executed independently. In atmosphere and ocean sciences, data assimilations that optimally combine data analyses and simulation studies have been developed. We develop a method for estimating frictional properties and monitoring slip evolution on an LSSE fault, with a sequential data assimilation method, the ensemble Kalman filter (EnKF). We executed numerical twin experiments for the Bungo Channel LSSE fault in southwest Japan to validate the method. First, based on a rate- and state-dependent friction law, we set a rate-weakening circular LSSE patch on the rate-strengthening flat plate interface, whose critical nucleation size is larger than that of the patch, and reproduced the observed Bungo Channel LSSEs with recurrence times of approximately 7 yr and slip durations of 1 yr. Then, we synthesized the observed data of surface displacement rates at uniformly distributed stations with noises from the simulated slip model. Using our EnKF method, we successfully estimated the frictional parameters and the slip rate evolution after a few cycles. Secondly, we considered the effect of the megathrust fault existing in the updip portion of the LSSE fault, as revealed by kinematic inversion studies of Global Navigation Satellite System (GNSS) data and added this locked region with a slip deficit rate in the model. We estimated the slip rate on the locked region only kinematically, but the quasi-dynamic equation of motion in each LSSE fault cell includes the stress term arising from the locked region. Based on this model, we synthesized the observed surface displacement rate data for the actual distribution of GNSS stations and executed EnKF estimations including the slip rate on the locked region. The slip rate on the locked region could be quickly retrieved. Even for the actual distribution of GNSS stations, we could successfully estimate frictional parameters and slip evolution on the LSSE fault. Thus, our twin numerical experiments showed the validity of our EnKF method, although we need further studies for actual GNSS data analyses.


2016 ◽  
Vol 43 (7) ◽  
pp. 3254-3262 ◽  
Author(s):  
Baptiste Rousset ◽  
Romain Jolivet ◽  
Mark Simons ◽  
Cécile Lasserre ◽  
Bryan Riel ◽  
...  

2020 ◽  
Vol 13 (10) ◽  
pp. 705-710
Author(s):  
Kyungjae Im ◽  
Demian Saffer ◽  
Chris Marone ◽  
Jean-Philippe Avouac

2020 ◽  
Author(s):  
Zeynep Yılmaz ◽  
Ali Özgün Konca ◽  
Semih Ergintav

<p>The North Anatolian Fault (NAF) produced multiple earthquakes of M>7 throughout the 20th century, while the part of NAF beneath Sea of Marmara did not rupture during this period. Analysis of the Main Marmara Fault's interseismic behavior, the most active branch of the North Anatolian Fault in this region, in terms of locking depth and fault slip rate is critical for evaluating the region's seismic risk with a population of more than 20 million, as it provides information about the seismic moment deficit that may release in a potential future earthquake.</p><p>In this study, we modeled the Main Marmara Fault's interseismic locking with realistic geometry and 3D structure including sedimentary basins, by implementing a 3D finite element approach and using interseismic GPS velocities. We have optimized the fits with GPS data by evaluating cases where each fault segment is constrained by a fault slip rate below a predefined locking depth ranging from 0 to 20 km. Preliminary models reveal that a difference in locking depth is required between the Western Marmara and the eastern end of the Ganos Segment entering the Sea of Marmara. This result, which is consistent with seismicity studies and other previous studies using 1D profiles shows that the strain accumulation under Western Marmara is less and that the locking depths or couplings are not similar in these two segments. For the Princes' Islands Segment, further analysis is required due to complexity in the GPS data. Recent earthquakes along Silivri also indicate that the strain accumulation is complex with most mechanisms showing significant thrust component. We have also calculated various possible strain accumulation patterns and compared the strain rate field around the Main Marmara Fault. Our results show that in most cases the change in the seismicity of each segment is consistent with the interseismic behavior associated with its fault locking.</p><p>(This research has been supported by Boğaziçi University Scientific Research Projects Coordination Unit. Project Number: 15022, 2019)</p>


2020 ◽  
Author(s):  
Frederique Rolandone ◽  
Jean-Mathieu nocquet ◽  
Patricia Mothes ◽  
Paul Jarrin ◽  
Mathilde Vergnolle

<p>In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.</p>


Sign in / Sign up

Export Citation Format

Share Document