Occurrence of Polar Stratospheric Clouds using ground-based DOAS observations

Author(s):  
Bianca Lauster ◽  
Steffen Dörner ◽  
Udo Frieß ◽  
Myojeong Gu ◽  
Janis Pukite ◽  
...  

<p>Polar Stratospheric Clouds (PSCs) favour heterogeneous reactions and thus are an important component of ozone depletion processes in polar regions. Although satellite observations already yield high spatial coverage, the sampling frequency of a specific air volume depends on the measurement method. Here, continuous ground-based measurements with high temporal resolution can be a valuable complement.</p><p>Since 1999, a MAX-DOAS (Multi AXis-Differential Optical Absorption Spectroscopy) instrument has been operating at the German research station Neumayer (70° S, 8° W), Antarctica. Primarily, slant column densities of trace gases such as NO<sub>2</sub>, BrO and OClO are retrieved. However, in this study the so-called colour index (CI), i.e. the colour of the zenith sky, is investigated. Defined as the ratio between the observed intensities of scattered sun light at two wavelengths, it enables to monitor the occurrence of polar stratospheric clouds during twilight even in the presence of tropospheric clouds.</p><p>Using the radiative transfer model McArtim, the CI changes in the presence of polar stratospheric clouds can be analysed. Especially the height of the PSC layer affects the retrieved signal, but also the choice of the wavelengths has a strong impact. Here, it is advantageous that measurements are available in the UV and visible spectral range which allows a more extensive comparison of different CI choices. In order to assess the application of the colour index method, meteorological data are used to identify PSC cases in the data set.</p><p>The aim is to improve and evaluate the potential of this method. It is then used to infer the occurrence of PSCs throughout the measurement time series of more than 20 years.</p>

2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2016 ◽  
Vol 9 (7) ◽  
pp. 2927-2946 ◽  
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey

Abstract. The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978–1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6° of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1–2 K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194 K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature–pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1–3 ppbv is indicated during mid-January for the 550 K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown based on their gridded Level 3 data following the PSC screening. Zonal coefficients of both species are essentially free of effects from PSCs on the 550 K surface, based on their average values along PV contours and in terms of equivalent latitude. Remnants of PSCs are still present in O3 on the 450 K surface during mid-January. It is judged that the LIMS Level 3 data are of good quality for analyzing the larger-scale, stratospheric chemistry and transport processes during the Arctic winter of 1978–1979.


2021 ◽  
Author(s):  
Laura Gómez Martín ◽  
Daniel Toledo ◽  
Margarita Yela ◽  
Cristina Prados-Román ◽  
José Antonio Adame ◽  
...  

<p><span>Ground-based zenith DOAS (Differential Optical Absorption Spectroscopy) measurements have been used to detect and estimate the altitude of PSCs over Belgrano II Antarctic station during the polar sunrise seasons of 2018 and 2019. The method used in this work studies the evolution of the color index (CI) during twilights. The CI has been defined here as the ratio of the recorded signal at 520 and 420 nm. In the presence of PSCs, the CI shows a maximum at a given solar zenith angle (SZA). The value of such SZA depends on the altitude of the PSC. By using a spherical Monte Carlo radiative transfer model (RTM), the method has been validated and a function relating the SZA of the CI maximum and the PSC altitude has been calculated. Model simulations also show that PSCs can be detected and their altitude can be estimated even in presence of optically thin tropospheric clouds or aerosols. Our results are in good agreement with the stratospheric temperature evolution obtained through the ERA5 data reanalysis from the global meteorological model ECMWF (European Centre for Medium Range Weather Forecasts) and the PSCs observations from CALIPSO (Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations).</span></p><p><span>The methodology used in this work could also be applied to foreseen and/or historical measurements obtained with ground-based spectrometers such e. g. the DOAS instruments dedicated to trace gas observation in Arctic and Antarctic sites. This would also allow to investigate the presence and long-term evolution of PSCs.</span></p><p><span><strong>Keywords: </strong>Polar stratospheric clouds; color index; radiative transfer model; visible spectroscopy.</span></p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1412
Author(s):  
Laura Gomez-Martin ◽  
Daniel Toledo ◽  
Cristina Prados-Roman ◽  
Jose Antonio Adame ◽  
Hector Ochoa ◽  
...  

By studying the evolution of the color index (CI) during twilight at high latitudes, polar stratospheric clouds (PSCs) can be detected and characterized. In this work, this method has been applied to the measurements obtained by a visible ground-based spectrometer and PSCs have been studied over the Belgrano II Antarctic station for years 2018 and 2019. The methodology applied has been validated by full spherical radiative transfer simulations, which confirm that PSCs can be detected and their altitude estimated with this instrumentation. Moreover, our investigation shows that this method is useful even in presence of optically thin tropospheric clouds or aerosols. PSCs observed in this work have been classified by altitude. Our results are in good agreement with the stratospheric temperature evolution obtained by the global meteorological model ECMWF (European Centre for Medium Range Weather Forecasts) and with satellite PSCs observations from CALIPSO (Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations). To investigate the presence and long-term evolution of PSCs, the methodology used in this work could also be applied to foreseen and/or historical observations obtained with ground-based spectrometers such e. g. those dedicated to Differential Optical Absorption Spectroscopy (DOAS) for trace gas observation in Arctic and Antarctic sites.


2021 ◽  
Author(s):  
Tobias Küchler ◽  
Stefan Noël ◽  
Heinrich Bovensmann ◽  
John Philip Burrows ◽  
Thomas Wagner ◽  
...  

Abstract. Water vapour is the most abundant natural greenhouse gas in the Earth's atmosphere and global data sets are required for meteorological applications and climate research. The Tropospheric Ozone Monitoring Instrument (TROPOMI) onboard Sentinel 5 Precursor (S5P) launched on 13 October 2017 has a very high spatial resolution of around 5 km and a daily global coverage. Currently, there is no operational total water vapour product for S5P measurements. Here, we present first results of a new scientific total column water vapour (TCWV) product for S5P using the so-called Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) scheme. This method analyses spectral data between 688 and 700 nm and has already been successfully applied to measurements from the Global Monitoring Experiment (GOME) on ERS-2, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on Envisat and GOME-2 on MetOp. The adaptation of the AMC-DOAS method to S5P data especially includes an additional post-processing procedure to correct the influences of surface albedo, cloud height and cloud fraction. The quality of the new S5P AMC-DOAS water vapour product is assessed by comparisons with data from GOME-2 on MetOp-B retrieved also with the AMC-DOAS algorithm and with four completely independent data sets, namely re-analysis data from the European Centre for Medium range Weather Forecast (ECMWF ERA5), data obtained by the Special Sensor Microwave Imager and Sounder (SSMIS) flown on the Defense Meteorological Satellite Program (DMSP) platform 16 and two scientific S5P TCWV products derived from TROPOMI measurements. Both are recently published TCWV products for S5P provided by the Max Planck Institute for Chemistry (MPIC) in Mainz and the Netherlands Institute for Space Research (SRON), Utrecht. The SRON TCWV is limited to clear sky scenes over land. These comparisons reveal a good agreement between the various data sets but also some systematic deviations between all of them. On average, the derived offset between AMC-DOAS S5P TCWV and AMC-DOAS GOME-2B TCWV is negative (around −1.5 kg m−2) over land and positive over ocean surfaces (more than 1.5 kg m−2). In contrast, SSMIS TCWV is on average lower than AMC-DOAS S5P TCWV by about 3 kg m−2. TCWV from ERA5 and S5P AMC-DOAS TCWV comparison shows spatial differences over both land and water surface. Over land there are systematical spatial structures with enhanced discrepancies between S5P AMC-DOAS TCWV and ERA5 TCWV in tropical regions. Over sea, S5P AMC-DOAS TCWV is slightly lower than ERA5 TCWV by around 2 kg m−2. The S5P AMC-DOAS TCWV and S5P TCWV from MPIC agree on average within 1 kg m−2 over both land and ocean. TCWV from SRON shows differences to AMC-DOAS S5P TCWV of around 1.2 kg m−2. All of these deviations are in line with the accuracy of these products and with the typical range of deviations of 5 kg m−2 obtained when comparing different TCWV data sets. The AMC-DOAS TCWV product for S5P provides therefore a valuable new and independent data set for atmospheric applications which also shows a better spatial coverage than the other S5P TCWV products.


2018 ◽  
Vol 10 (4) ◽  
pp. 2195-2211 ◽  
Author(s):  
Jordis S. Tradowsky ◽  
Gregory E. Bodeker ◽  
Richard R. Querel ◽  
Peter J. H. Builtjes ◽  
Jürgen Fischer

Abstract. A site atmospheric state best estimate (SASBE) of the temperature profile above the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple sources are combined within the SASBE to generate a high temporal resolution data set that includes an estimate of the uncertainty on every value.The SASBE has been developed to enhance the value of measurements made at the distributed GRUAN site at Lauder and Invercargill (about 180 km apart), and to demonstrate a methodology which can be adapted to other distributed sites. Within GRUAN, a distributed site consists of a cluster of instruments at different locations.The temperature SASBE combines measurements from radiosondes and automatic weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is used to calculate a diurnal temperature cycle to which the SASBE converges in the absence of any measurements.The SASBE provides hourly temperature profiles at 16 pressure levels between the surface and 10 hPa for the years 1997 to 2012. Every temperature value has an associated uncertainty which is calculated by propagating the measurement uncertainties, the ERA5 ensemble standard deviations, and the ERA5 representativeness uncertainty through the retrieval chain. The SASBE has been long-term archived and is identified using the digital object identifier https://doi.org/10.5281/zenodo.1195779.The study demonstrates a method to combine data collected at distributed sites. The resulting best-estimate temperature data product for Lauder is expected to be valuable for satellite and model validation as measurements of atmospheric essential climate variables are sparse in the Southern Hemisphere. The SASBE could, for example, be used to constrain a radiative transfer model to provide top-of-the-atmosphere radiances with traceable uncertainty estimates.


2010 ◽  
Vol 10 (5) ◽  
pp. 2439-2456 ◽  
Author(s):  
U. Frieß ◽  
T. Deutschmann ◽  
B. S. Gilfedder ◽  
R. Weller ◽  
U. Platt

Abstract. Recent ground-based and space borne observations suggest the presence of significant amounts of iodine monoxide in the boundary layer of Antarctica, which are expected to have an impact on the ozone budget and might contribute to the formation of new airborne particles. So far, the source of these iodine radicals has been unknown. This paper presents long-term measurements of iodine monoxide at the German Antarctic research station Neumayer, which indicate that high IO concentrations in the order of 50 ppb are present in the snow interstitial air. The measurements have been performed using multi-axis differential optical absorption spectroscopy (MAX-DOAS). Using a coupled atmosphere – snowpack radiative transfer model, the comparison of the signals observed from scattered skylight and from light reflected by the snowpack yields several ppb of iodine monoxide in the upper layers of the sunlit snowpack throughout the year. Snow pit samples from Neumayer Station contain up to 700 ng/l of total iodine, representing a sufficient reservoir for these extraordinarily high IO concentrations.


2005 ◽  
Vol 5 (11) ◽  
pp. 3071-3079 ◽  
Author(s):  
C. von Savigny ◽  
E. P. Ulasi ◽  
K.-U. Eichmann ◽  
H. Bovensmann ◽  
J. P. Burrows

Abstract. Satellite-based measurements of Visible/NIR limb-scattered solar radiation are well suited for the detection and mapping of polar stratospheric clouds (PSCs). This publication describes a method to detect PCSs from limb scattering observations with the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Space Agency's Envisat spacecraft. The method is based on a color-index approach and requires a priori knowledge of the stratospheric background aerosol loading in order to avoid false PSC identifications by stratospheric background aerosol. The method is applied to a sample data set including the 2003 PSC season in the Southern Hemisphere. The PSCs are correlated with coincident UKMO model temperature data, and with very few exceptions, the detected PSCs occur at temperatures below 195–198 K. Monthly averaged PSC descent rates are about 1.5 km/month for the −50° S to −75° S latitude range and assume a maximum between August and September with a value of about 2.5 km/month. The main cause of the PSC descent is the slow descent of the lower stratospheric temperature minimum.


2018 ◽  
Author(s):  
Jordis S. Tradowsky ◽  
Gregory E. Bodeker ◽  
Richard R. Querel ◽  
Peter J. H. Builtjes ◽  
Juergen Fischer

Abstract. A Site Atmospheric State Best Estimate (SASBE) of the temperature profile above the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple sources are combined within the SASBE to generate a high temporal resolution data set that includes an estimate of the uncertainty on every value. The SASBE has been developed to enhance the value of measurements made at the distributed GRUAN site at Lauder and Invercargill (about 180 km apart), and to demonstrate a methodology which can be adapted to other distributed sites. Within GRUAN, a distributed site consists of a cluster of instruments at different locations. The temperature SASBE combines measurements from radiosondes and automatic weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is used to calculate a diurnal temperature cycle to which the SASBE converges in the absence of any measurements. The SASBE provides hourly temperature profiles at 16 pressure levels between the surface and 10 hPa for the years 1997 to 2012. Every temperature value has an associated uncertainty which is calculated by propagating the measurement uncertainties, the ERA5 ensemble SDs, and the ERA5 representativeness uncertainty through the retrieval chain. The SASBE has been longterm archived and obtained the following digital object identifier (doi): doi:10.5281/zenodo.1195779 The study demonstrates a method to combine data collected at distributed sites. The resulting best-estimate temperature data product for Lauder is expected to be valuable for satellite and model validation as measurements of atmospheric essential climate variables are sparse in the Southern Hemisphere. The SASBE could, for example, be used to constrain a radiative transfer model to provide top-of-the-atmosphere radiances with traceable uncertainty estimates.


2005 ◽  
Vol 5 (4) ◽  
pp. 7169-7190 ◽  
Author(s):  
C. von Savigny ◽  
E. P. Ulasi ◽  
K.-U. Eichmann ◽  
H. Bovensmann ◽  
J. P. Burrows

Abstract. Satellite-based measurements of Visible/NIR limb-scattered solar radiation are well suited for the detection and mapping of polar stratospheric clouds (PSCs). This publication describes a method to detect PCSs from limb scattering observations with the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Space Agency's Envisat spacecraft. The method is based on a color-index approach and requires a priori knowledge of the stratospheric background aerosol loading in order to avoid false PSC identifications by stratospheric background aerosol. The method is applied to a sample data set including the 2003 PSC season in the Southern Hemisphere. The PSCs are correlated with coincident UKMO model temperature data, and with very few exceptions, the detected PSCs occur at temperatures below 195–198 K. Monthly averaged PSC descent rates are about 1.5 km/month for the −50° S to −75° S latitude range and assume a maximum between August and September with a value of about 2.5 km/month. The main cause of the PSC descent is the slow descent of the lower stratospheric temperature minimum.


Sign in / Sign up

Export Citation Format

Share Document