A multidisciplinary study for geothermal energy sources identification in the Baia Mare area (Romania)

Author(s):  
Ionelia Panea ◽  
Carmen Gaina ◽  
Victor Mocanu ◽  
Ioan Munteanu ◽  
Lucian Petrescu ◽  
...  

<p>Geothermal energy is known as a renewable source that has little effect on environment, since no burning process is involved in the producing of thermal and electric energy. Geothermal water is considered an environmentally friendly energy source which is valuable especially in polluted areas. Our study area, the Baia Mare region, is located in the northwestern part of Romania, a region known as one of the most polluted environment in Romania due to its long-lasting local mining and metallurgical activities. Additional quantities of CO2 emissions resulted from the use of various, relatively cheap, heating sources by the local population. The main goals of our study are to evaluate the subsurface geothermal potential of the Baia Mare area and to identify promising geothermal exploitation sites. Heat flow values in this area are among the highest in Romania. We therefore plan to combine geological, geophysical, geochemical and hydrogeological data (geo-data) in order to provide a geoscientific solution for increasing the geothermal energy production in this part of Romania. Our research program contains surface geological mapping, geophysical surveys (active and passive seismic, magnetic, magnetotelluric and geothermal), geochemical analysis, hydrogeological surveys, modeling of geo-data and joint interpretation of geo-data. An initial 3D geothermal model will be built using existent geo-data. This model will help us to identify subsurface structures which show high potential for geothermal exploration. Interpretation of existent active seismic data collected during previous hydrocarbon exploration will provide information about the subsurface structural geology. The results of the new interpretation will be compared and correlated with the existent geological maps and sections for the study area. The magnetic data available in the public domain will be used to identify subsurface igneous bodies. The temperature data available from previous measurements will be used to build temperature-versus-depth distributions. These results will be analysed within a larger geodynamic framework. A pilot site will be selected after the analysis of the initial 3D geothermal model on which we plan to collect and record new geo-data. Data processing, inversion and modeling will be performed in order to create the final geothermal model with locations of promising exploitation wells. </p>

2014 ◽  
Vol 51 (4) ◽  
pp. v-ix ◽  
Author(s):  
Andrew J. Calvert ◽  
Graham D.M. Andrews

Infestation by the mountain pine beetle, Dendroctonus ponderosae, decimated the forests of central British Columbia from 1999 to 2012, severely impacting the forest industry of the Nechako–Chilcotin plateau. In response, all levels of government recognized the value in developing other areas of economic activity, such as hydrocarbon and mineral exploitation, to support local economies. Exploration for resources beneath the Nechako–Chilcotin plateau has historically been constrained by Tertiary volcanic sequences and Quaternary glacial deposits that obscure the underlying geology and limit geophysical imaging. Thus, a coordinated program comprising additional geological mapping, borehole data analysis, and modern geophysical surveys of the area was initiated in 2006, with the objective of better defining the subsurface geology, solving problems of imaging through the complex near-surface, and developing improved regional geological and tectonic models. An initial set of papers arising from this fieldwork, which focused on issues relevant to mineral and hydrocarbon exploration, was published in June 2011 in a Special Issue of the Canadian Journal of Earth Sciences. This Introduction to the second “Mountain Pine Beetle” Special Issue summarizes a set of scientific papers that focus on topics more related to hydrocarbon exploration and the large-scale structure of the crust. The papers deal with the development, thickness, and present distribution of the most prospective Cretaceous sedimentary rocks, as well as characterizing the physical properties of the near-surface volcanic units.


Author(s):  
Thorkild M. Rasmussen ◽  
Leif Thorning

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, T. M., & Thorning, L. (1999). Airborne geophysical surveys in Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 34-38. https://doi.org/10.34194/ggub.v183.5202 _______________ Airborne geophysical surveying in Greenland during 1998 consisted of a magnetic project referred to as ‘Aeromag 1998’ and a combined electromagnetic and magnetic project referred to as ‘AEM Greenland 1998’. The Government of Greenland financed both with administration managed by the Geological Survey of Denmark and Greenland (GEUS). With the completion of the two projects, approximately 305 000 line km of regional high-resolution magnetic data and approximately 75 000 line km of detailed multiparameter data (electromagnetic, magnetic and partly radiometric) are now available from government financed projects. Figure 1 shows the location of the surveyed areas with highresolution geophysical data together with the area selected for a magnetic survey in 1999. Completion of the two projects was marked by the release of data on 1 March, 1999. The data are included in the geoscientific databases at the Survey for public use; digital data and maps may be purchased from the Survey.


Author(s):  
Robert W. Stemp

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemp, R. W. (1997). Airborne geophysical surveys in Greenland – 1996 update. Geology of Greenland Survey Bulletin, 176, 75-79. https://doi.org/10.34194/ggub.v176.5069 _______________ Two major airborne geophysical surveys were carried out in 1996, the third year of a planned five-year electromagnetic and magnetic survey programme (project AEM Greenland 1994–1998) financed by the Government of Greenland, and the second year of an aeromagnetic survey programme (project Aeromag) jointly financed by the governments of Denmark and Greenland; both projects are managed by the Geological Survey of Denmark and Greenland (GEUS). The two 1996 surveys were: 1) Project Aeromag 1996 in South-West and southern West Greenland;2) Project AEM Greenland 1996 in South-West Greenland. All areas surveyed and planned for future surveys as of March 1997 are shown in Figure 1. Results of both the 1996 surveys were released in March 1997, as a continuation of a major effort to make high quality airborne geophysical data available for both mineral exploration and geological mapping purposes. The data acquired are included in geoscientific databases at GEUS for public use; digital data and maps may be purchased from the Survey. The main results from the 1996 surveys are described in Thorning & Stemp (1997) and Stemp (1997). Two further new airborne surveys have already been approved for data acquisition during the 1997 field season, with subsequent data release in March 1998. A summary of all surveys completed, in progress or planned since the formal inception of project AEM Greenland 1994–1998 is given in Table 1. The programme was expanded to include a separate regional aeromagnetic survey in 1995, provisionally for 1995–1996, with extension subject to annual confirmation and funding.


2020 ◽  
pp. 11-18
Author(s):  
A.S. Hasanov ◽  
◽  
◽  

Khidirly-Bandovan structures have been studied through geological mapping, structural exploration drilling, geophysical methods (gravimetric, magnetic, electrical, seismic exploration methods) since the 1930s. Small amount of oil from different wells in the upper part of Productive Series (PS) and huge amount of gas fountain from Middle Absheron sediments have been obtained. As the interest to these areas had not decreased, the geophysical surveys continued during further years. Seismic exploration surveys were executed in Bandovan structure via Common Depth Point (CDP) method in 2004, refracted ray method and gravimetric exploration complex in 2006 and 3D seismic exploration works and gravimetric investigations with “Scintrex CG-5 Autograv” devices in 2016, correspondingly. In the result of analysis of distribution characteristics for local gravimetric anomalies, as well as 3D descriptions of new gravimetric data, up-to-date logs on tectonic state of Khidirly-Bandovan structure have been obtained and as the new oil-gas exploration objects, the west and south-west wings of these structures highlighted.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
Alvin K. Benson ◽  
Andrew R. Floyd

Gravity and magnetic data were collected in the Mosida Hills, Utah County, Utah, at over 1100 stations covering an area of approximately 58 km2 (150 mi2) in order to help define the subsurface geology and assess potential geological hazards for urban planning in an area where the population is rapidly increasing. In addition, potential hydrocarbon traps and mineral ore bodies may be associated with some of the interpreted subsurface structures. Standard processing techniques were applied to the data to remove known variations unrelated to the geology of the area. The residual data were used to generate gravity and magnetic contour maps, isometric projections, profiles, and subsurface models. Ambiguities in the geological models were reduced by (1) incorporating data from previous geophysical surveys, surface mapping, and aeromagnetic data, (2) integrating the gravity and magnetic data from our survey, and (3) correlating the modeled cross sections. Gravity highs and coincident magnetic highs delineate mafic lava flows, gravity lows and magnetic highs reflect tuffs, and gravity highs and magnetic lows spatially correlate with carbonates. These correlations help identify the subsurface geology and lead to new insights about the formation of the associated valleys. At least eight new faults (or fault segments) were identified from the gravity data, whereas the magnetic data indicate the existence of at least three concealed and/or poorly exposed igneous bodies, as well as a large ash‐flow tuff. The presence of low‐angle faults suggests that folding or downwarping, in addition to faulting, played a role in the formation of the valleys in the Mosida Hills area. The interpreted location and nature of concealed faults and volcanic flows in the Mosida Hills area are being used by policy makers to help develop mitigation procedures to protect life and property.


2017 ◽  
Vol 5 (3) ◽  
pp. T299-T311 ◽  
Author(s):  
Sarah G. R. Devriese ◽  
Kristofer Davis ◽  
Douglas W. Oldenburg

The Tli Kwi Cho (TKC) kimberlite complex contains two pipes, called DO-27 and DO-18, which were discovered during the Canadian diamond exploration rush in the 1990s. The complex has been used as a testbed for ground and airborne geophysics, and an abundance of data currently exist over the area. We have evaluated the historical and geologic background of the complex, the physical properties of interest for kimberlite exploration, and the geophysical surveys. We have carried out 3D inversion and joint interpretation of the potential field data. The magnetic data indicate high susceptibility at DO-18, and the magnetic inversion maps the horizontal extent of the pipe. DO-27 is more complicated. The northern part is highly magnetic and is contaminated with remanent magnetization; other parts of DO-27 have a low susceptibility. Low densities, obtained from the gravity and gravity gradiometry data, map the horizontal extents of DO-27 and DO-18. We combine the 3D density contrast and susceptibility models into a single geologic model that identifies three distinct kimberlite rock units that agree with drilling data. In further research, our density and magnetic susceptibility models are combined with information from electromagnetic data to provide a multigeophysical interpretation of the TKC kimberlite complex.


2021 ◽  
Author(s):  
Pauline Le Maire ◽  
Denis Thieblemont ◽  
Marc Munschy ◽  
Guillaume Martelet ◽  
Geoffroy Mohn

<p>Continent-Ocean Transitions (COT) and ultra-slow spreading ridges, floored by wide area of exhumed serpentinized mantle, bear strong amplitude magnetic lineations. However, whether these anomalies are linked to inversions of the direction of the magnetization (therefore characterized as isochrones of seafloor spreading) or to structural and lithological contrasts remains an open question. Generally, marine magnetic data acquired at sea surface along profiles, are too low resolution to image the intensity variations of the magnetic field at a kilometric scale. Performing a dense deep tow magnetic survey at a present-day COT or ultra-slow spreading system would be better to determine the sources of the magnetic signal but remains expensive. To go ahead, a valuable alternative to address these questions is to record the magnetic signal on ophiolite representing remnants of COT and oceanic systems sampled in orogenic system. We worked on the Chenaillet Ophiolite (French Alps), which represents a fossil COT or ultra-slow spreading system integrated to the Alpine orogeny. This ophiolite escaped high-pressure metamorphism and has only been weakly deformed during Alpine orogeny, preserving its pre-orogenic structure.</p><p>We performed an UAV magnetic survey using fluxgate magnetometers in complex conditions due to the altitude (> 1800 m), the strong topography variations and the weather conditions (negative temperatures, snow). Despite these difficulties, which highlight the viability of UAV for geophysical measurements, a survey of 20 square kilometers with 219 km of profiling was completed 100 m above ground level. Flight line spacing is 100 m above the ophiolitic basement and 200 m above the sedimentary units. Another magnetic UAV survey was flown with another UAV to map a small area 10 m above ground level. Magnetic anomaly maps were computed after standard processing (e.g., calibration/compensation, temporal variation and regional magnetic field corrections, levelling).</p><p>Our first results evidence well-defined magnetic anomalies clearly linked to serpentinite. This shows that the magnetic signal is of sufficient resolution to contribute to a revision of the cartography of the massif combining geological observations and magnetic data.</p><p>In addition, the magnetic susceptibility was measured on 60 outcrops, to support interpretation.</p><p>In this presentation, we focus on the magnetic acquisition campaigns, processing and 2D/3D interpretations by forward modelling and data inversion. Lastly, two items are discussed: 1) contribution of magnetic UAV surveys for geological mapping; and 2) implication of the results on the Chenaillet massif to discuss the contribution of magnetic mapping to the understanding of the TOC or ultra-slow spreading system.</p>


1999 ◽  
Vol 39 (1) ◽  
pp. 494
Author(s):  
I. Kivior ◽  
D. Boyd

Aeromagnetic surveys have been generally regarded in petroleum exploration as a reconnaissance tool for major structures. They were used commonly in the early stages of exploration to delineate the shape and depth of the sedimentary basin by detecting the strong magnetic contrast between the sediments and the underlying metamorphic basement. Recent developments in the application of computer technology to the study of the earth's magnetic field have significantly extended the scope of aeromagnetic surveys as a tool in the exploration for hydrocarbons. In this paper the two principal methods used in the analysis and interpretation of aeromagnetic data over sedimentary basins are: 1) energy spectral analysis applied to gridded data; and, 2) automatic curve matching applied to profile data. It is important to establish the magnetic character of sedimentary and basement rocks, and to determine the regional magnetic character of the area by applying energy spectral analysis. Application of automatic curve matching to profile data can provide results from the sedimentary section and deeper parts of a basin. High quality magnetic data from an experimental aeromagnetic survey flown over part of the Eromanga/Cooper Basin has recently been interpreted using this new approach. From this survey it is possible to detect major structures such as highs and troughs in the weakly magnetic basement, as well as pick out faults, and magnetic layers in the sedimentary section. The results are consistent with interpretation from seismic and demonstrate that aeromagnetic data can be used to assist seismic interpretation, for example to interpolate between widely spaced seismic lines and sometimes to locate structures which can not be detected from seismic surveys. This new approach to the interpretation of aeromagnetic data can provide a complementary tool for hydrocarbon exploration, which is ideal for logistically difficult terrain and environmentally sensitive areas.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2140 ◽  
Author(s):  
Matteo Basilici ◽  
Stefano Mazzoli ◽  
Antonella Megna ◽  
Stefano Santini ◽  
Stefano Tavani

The Zagros thrust belt is a large orogenic zone located along the southwest region of Iran. To obtain a better knowledge of this important mountain chain, we elaborated the first 3-D model reproducing the thermal structure of its northwestern part, i.e., the Lurestan arc. This study is based on a 3-D structural model obtained using published geological sections and available information on the depth of the Moho discontinuity. The analytical calculation procedure took into account the temperature variation due to: (1) The re-equilibrated conductive state after thrusting, (2) frictional heating, (3) heat flow density data, and (4) a series of geologically derived constraints. Both geotherms and isotherms were obtained using this analytical methodology. The results pointed out the fundamental control exerted by the main basement fault of the region, i.e., the Main Frontal Thrust (MFT), in governing the thermal structure of the crust, the main parameter being represented by the amount of basement thickening produced by thrusting. This is manifested by more densely spaced isotherms moving from the southwestern foreland toward the inner parts of orogen, as well as in a lateral variation related with an along-strike change from a moderately dipping crustal ramp of the MFT to the NW to a gently dipping crustal ramp to the SE. The complex structural architecture, largely associated with late-stage (Pliocene) thick-skinned thrusting, results in a zone of relatively high geothermal gradient in the easternmost part of the study area. Our thermal model of a large crustal volume, besides providing new insights into the geodynamic processes affecting a major salient of the Zagros thrust belt, may have important implications for seismotectonic analysis in an area recently affected by a Mw = 7.3 earthquake, as well as for geothermal/hydrocarbon exploration in the highly perspective Lurestan region.


Sign in / Sign up

Export Citation Format

Share Document