Interaction between equatorial stratospheric Kelvin waves and gravity waves in a QBO phase

Author(s):  
Young-Ha Kim ◽  
Ulrich Achatz

<p>An interaction between Kelvin waves and gravity waves (GWs) in the tropical stratosphere is investigated using the global weather-forecasting model ICON with a horizontal grid spacing of ~160 km. To represent GWs in ICON, the Multi-Scale Gravity Wave Model (MS-GWaM) is used as a subgrid-scale parameterization, which is a prognostic model that explicitly calculates the evolution of GW action density in phase space. The simulation is initialized on a day in the QBO phase of the easterly maximum at ~20 hPa, so that Kelvin waves can propagate vertically throughout the lower stratosphere during the simulation. We show that Kelvin waves with zonal-wind amplitudes of about 10 m s<sup>-1</sup> can largely affect the distribution of GW drag, by disturbing the local wind shear. Moreover, due to the zonal asymmetry in the activity of tropospheric convection, which is the source of GWs in the tropics, this effect of Kelvin waves can also influence the zonal mean of GW drag. The effect seems to be large when a strong convective system, from which large-amplitude GWs are generated, propagates eastward in the troposphere together with a phase of stratospheric Kelvin wave aloft. In our case, such an interaction causes a zonal-mean GW drag of ~0.26 m s<sup>-1</sup> d<sup>-1</sup> at ~20 hPa for a week during an early phase of the easterly-to-westerly transition of the QBO. The result emphasizes the importance of a correct representation of large-scale waves as well as subgrid-scale GWs in QBO simulations.</p>

2015 ◽  
Vol 73 (1) ◽  
pp. 407-428 ◽  
Author(s):  
Michael J. Herman ◽  
Zeljka Fuchs ◽  
David J. Raymond ◽  
Peter Bechtold

Abstract The authors analyze composite structures of tropical convectively coupled Kelvin waves (CCKWs) in terms of the theory of Raymond and Fuchs using radiosonde data, 3D analysis and reanalysis model output, and annual integrations with the ECMWF model on the full planet and on an aquaplanet. Precipitation anomalies are estimated using the NOAA interpolated OLR and TRMM 3B42 datasets, as well as using model OLR and rainfall diagnostics. Derived variables from these datasets are used to examine assumptions of the theory. Large-scale characteristics of wave phenomena are robust in all datasets and models where Kelvin wave variance is large. Indices from the theory representing column moisture and convective inhibition are also robust. The results suggest that the CCKW is highly dependent on convective inhibition, while column moisture does not play an important role.


2017 ◽  
Vol 17 (2) ◽  
pp. 793-806 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin-wave activity are investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool for quantifying tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show the strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient sub-seasonal waves (2 K2), and about half of sub-seasonal variance is explained by eastward-traveling Kelvin waves with periods of 4 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and interannual variability contribute about a third (1 K2) to total resolved zonal variance. Sub-seasonal waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin-wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


2014 ◽  
Vol 71 (2) ◽  
pp. 596-614 ◽  
Author(s):  
Samuel F. Potter ◽  
Geoffrey K. Vallis ◽  
Jonathan L. Mitchell

Abstract The nondimensional parameter space of an idealized dry primitive equation model is explored to find superrotating climate states. The model has no convective parameterization and is forced using a simple thermal relaxation to a prescribed radiative equilibrium temperature. It is demonstrated that, of four nondimensional parameters that determine the model’s state, only the thermal Rossby number has a significant effect on superrotation. The mode that drives the transition to superrotation in an intermediate-thermal-Rossby-number atmosphere is shown to behave like a Kelvin wave in the tropics.


2014 ◽  
Vol 742 ◽  
pp. 308-339 ◽  
Author(s):  
Hugo N. Ulloa ◽  
Alberto de la Fuente ◽  
Yarko Niño

AbstractThe temporal evolution of nonlinear large-scale internal gravity waves, in a two-layer flow affected by background rotation, is studied via laboratory experiments conducted in a cylindrical tank, mounted on a rotating turntable. The internal wave field is excited by the relaxation of an initial forced tilt of the density interface ($\eta _{i}$), which generates internal waves, such as Kelvin and Poincaré waves, in response to rotation effects. The behaviour of $\eta _{i}$, in the shore region, is analysed in terms of the background rotation and the nonlinear steepening of the basin-scale waves. The results show that the degeneration of the fundamental Kelvin wave into a solitary-type wave packet is caused by nonlinear steepening and it is influenced by the background rotation. In addition, the physical scales of the leading solitary-type wave are closer to Korteweg–de Vries theory as the rotation increases. Moreover, the nonlinear interaction between the Kelvin wave and the Poincaré wave can transfer energy to higher or lower frequencies than the frequency of the fundamental Kelvin wave, as a function of the background rotation. In particular, a specific normal mode in the off-shore region could be energized by this interaction. Finally, the bulk decay rate of the fundamental Kelvin wave, $\tau _{dk}$, was investigated. The results exhibit that $\tau _{dk}$ is concordant with the Ekman damping time scale when there is no evidence of steepening in the basin-scale waves. However, as nonlinear processes increase, $\tau _{dk}$ shows a strong decrease. In this context, the nonlinear processes play an important role in the decay of the fundamental Kelvin wave, via the energy radiation to other modes. The results reported demonstrate that the background rotation and nonlinear processes are essential aspects in understanding the degeneration and the decay of large-scale internal gravity waves on enclosed basins.


2008 ◽  
Vol 8 (14) ◽  
pp. 4019-4026 ◽  
Author(s):  
F. Immler ◽  
K. Krüger ◽  
M. Fujiwara ◽  
G. Verver ◽  
M. Rex ◽  
...  

Abstract. A number of field-campaigns in the tropics have been conducted in recent years with two different LIDAR systems at Paramaribo (5.8° N, 55.2° W), Suriname. The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis showed that equatorial Kelvin waves propagated in the TTL and greatly modulated its temperature structure. We found a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. These findings suggest an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.


Author(s):  
Young-Ha Kim ◽  
Gergely Bölöni ◽  
Sebastian Borchert ◽  
Hye-Yeong Chun ◽  
Ulrich Achatz

AbstractIn a companion paper, the Multi-Scale Gravity-Wave Model (MS-GWaM) has been introduced and its application to a global model as a transient subgrid-scale parameterization has been described. This paper focuses on the examination of intermittency of gravity waves (GWs) modeled by MS-GWaM. To introduce the variability and intermittency in wave sources, convective GW sources are formulated, using diabatic heating diagnosed by the convection parameterization, and they are coupled to MS-GWaM in addition to a flow-independent source in the extratropics accounting for GWs due neither to convection nor to orography. The probability density function (PDF) and Gini index for GWpseudomomentum fluxes are assessed to investigate the intermittency. Both are similar to those from observations in the lower stratosphere. The intermittency of GWs over tropical convection is quite high and found not to change much in the vertical. In the extratropics, where non-convective GWs dominate, the intermittency is lower than (comparable to) that in the tropics in the stratosphere (mesosphere), exhibiting a gradual increase with altitude. The PDFs in these latitudes seem to be close to the log-normal distributions. Effects of transient GW-mean-flow interactions on the simulated GWintermittency are assessed by performing additional simulations using the steady-state assumption in the GW parameterization. The intermittency of parameterized GWs over tropical convection is found to be overestimated by the assumption, whereas in the extratropics it is largely underrepresented. Explanation and discussion of these effects are included.


2008 ◽  
Vol 8 (1) ◽  
pp. 2849-2862 ◽  
Author(s):  
F. Immler ◽  
K. Krüger ◽  
M. Fujiwara ◽  
G. Verver ◽  
M. Rex ◽  
...  

Abstract. A number of field-campaigns in the tropics have been conducted in the recent years with two different LIDAR systems at Paramaribo in Suriname (5.8° N, 55.2° W). The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis show that temperature anomalies caused by equatorial Kelvin waves propagate downward, well below the cold point tropopause (CPT). We find a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. This finding suggests an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.


2020 ◽  
Author(s):  
Young-Ha Kim ◽  
Gergely Bölöni ◽  
Sebastian Borchert ◽  
Hye-Yeong Chun ◽  
Ulrich Achatz

<p class="Normal tm5"><span class="tm6">The intermittency of gravity waves (GWs) is investigated using Multi-Scale Gravity Wave Model (MS-GWaM) implemented in the upper-atmosphere extension of ICON model. The intermittency of GWs is originated from that of wave sources but altered during propagation of the waves. Conventional GW parametrization (GWP), which diagnoses vertical profiles of GW properties under the steady-state assumption, can take into account the source intermittency if the GWP employs flow-dependent sources, while it cannot present the change of intermittency by transient evolutions of GWs. MS-GWaM is a prognostic model that explicitly solves the evolution of positions of waves (as well as their wavenumbers and amplitudes) in time and thus capable of describing the intermittency change. In order to include the source intermittency and variability, we couple the convective source, as diagnosed by subgrid-scale cumulus parametrization in ICON, to MS-GWaM, based on an analytic formulation of GW response to this source. In addition to this, a spatio-temporally uniform, persistent source is prescribed in the extratropics to take into account other non-orographic sources. Orographic sources are currently not used. The GW intermittency is measured by the Gini index, and is found to be quite high in the tropics, compared to that in the extratropics. In both regions, the index has similar values to those obtained from superpressure balloon observations reported in previous studies. A control experiment is performed using GWP based on the steady-state assumption, but coupled to the same wave sources, to assess the effects of transient modelling using MS-GWaM on the simulated intermittency. From comparison to the control experiment, the intermittency is found to increase largely for GWs from the uniform source but to decrease for convective GWs by the transient modelling.</span></p>


2019 ◽  
Author(s):  
Ashok Kumar Pokharel ◽  
Michael L. Kaplan

Abstract. Based on the large scale transport of dust driven by the winds parallel to the mountains in the Harmattan, Saudi Arabian, and Bodélé Depression dust storms cases, a detailed study of the generation of Kelvin Waves and its possible role in organizing these dust storms and large scale dust transport was accomplished. For this study, observational and numerical model analyses were done in an in depth manner. For this, MERRA reanalysis datasets, WRF simulated high resolution variables, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, and MERRA-2 dust scattering AOD modelling plots, surface observations, and rawinsonde soundings were analyzed for each of these three case studies. We found there were meso-β scale (horizontal length scale of 20–200 km) adjustment processes resulting in Kelvin waves only in the Harmattan and the Bodélé Depression cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. We find that this Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale (meso-α to synoptic).


2016 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin wave activity is investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool to quantify tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient high-frequency waves (2 K2) and about half of high-frequency variance is explained by eastward traveling Kelvin waves with periods of 7 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and inter-annual variability contribute about a third (1 K2) to total resolved zonal variance. High-frequency waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


Sign in / Sign up

Export Citation Format

Share Document