Uncertainties in Mass Balance Estimation of the Antarctic Ice Sheet Using Input-output Method

Author(s):  
Yijing Lin ◽  
Yan Liu

<p>Input-Output method (IOM) is a common method for estimating ice sheet mass balance, which shows ice dynamics in mass loss to analyze the response of ice sheet to climate change. However, compared with the altimetry method and the gravity method, the mass balance estimation using IOM has relatively large uncertainty. Assessing the impact of the uncertainties of each component in IOM on the mass balance estimation is conducive to effectively lowering uncertainty in the Antarctic mass budget estimate but of which there has been little quantitative analysis. We assess the uncertainty in the mass balance due to methodological differences in IOM, compare the differences of surface mass balance (SMB, input) in diverse versions and at different spatial scales, and evaluate the uncertainty in ice discharge (FG, output) due to data uncertainty in ice thickness, ice velocity and grounding line. Results showed that the SMBs at different scales are more divergent than that in different versions, resulting in a variation of 216.7 Gt yr<sup>-1</sup> in Antarctica, of which the Antarctic peninsula accounts for 55.1%, followed by East Antarctica. The largest variation in FG due to uncertainty in the location of the grounding line is observed, where a 1 km retreat and a 1 km advance of the Antarctic grounding line would respectively result in FG reductions of 82.8 Gt yr<sup>-1</sup> and 272.7 Gt yr<sup>-1</sup>, which are significant in all regions, with the FG corresponding to a 1 km retreat of grounding line in the islands being closer to the multi-year average SMB of the islands. The difference in Antarctic FG due to different ice thickness products is 124.4 Gt yr<sup>-1</sup>, consistent with the trend in the thickness of ice shelves, and that due to different ice velocity products is only 18.7 Gt yr<sup>-1</sup>. Within the same margin of error, systematic errors in ice thickness and ice velocity result in an order of magnitude higher difference of FG than random errors.</p>

2021 ◽  
Author(s):  
Yijing Lin ◽  
Yan Liu ◽  
Zhitong Yu ◽  
Xiao Cheng ◽  
Qiang Shen ◽  
...  

Abstract. The input-output method (IOM) is one of the most popular methods of estimating the ice sheet mass balance (MB), with a significant advantage in presenting the dynamics response of ice to climate change. Assessing the uncertainties of the MB estimation using the IOM is crucial to gaining a clear understanding of the Antarctic ice-sheet mass budget. Here, we introduce a framework for assessing the uncertainties in the MB estimation due to the methodological differences in the IOM, the impact of the parameterization and scale effect on the modeled surface mass balance (SMB, input), and the impact of the uncertainties of ice thickness, ice velocity, and grounding line data on ice discharge (D, output). For the assessment of the D’s uncertainty, we present D at a fine scale. Compared with the goal of determining the Antarctic MB within an uncertainty of 15 Gt yr−1, we found that the different strategies employed in the methods cause considerable uncertainties in the annual MB estimation. The uncertainty of the RACMO2.3 SMB caused by its parameterization can reach 20.4 Gt yr−1, while that due to the scale effect is up to 216.7 Gt yr−1. The observation precisions of the MEaSUREs InSAR-based velocity (1–17 m yr−1), the airborne radio-echo sounder thickness (±100 m), and the MEaSUREs InSAR-based grounding line (±100 m) contribute uncertainties of 17.1 Gt yr−1, 10.5 ± 2.7 Gt yr−1 and 8.0~27.8 Gt yr−1 to the D, respectively. However, the D’s uncertainty due to the remarkable ice thickness data gap, which is represented by the thickness difference between the BEDMAP2 and the BedMachine reaches 101.7 Gt yr−1, which indicates its dominant cause of the future D’s uncertainty. In addition, the interannual variability of D caused by the annual changes in the ice velocity and ice thickness are considerable compared with the target uncertainty of 15 Gt yr−1, which cannot be ignored in annual MB estimations.


2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.


2020 ◽  
Author(s):  
Stephen Chuter ◽  
Jonathan Rougier ◽  
Geoffrey Dawson ◽  
Jonathan Bamber

&lt;p&gt;Long-term continuous monitoring of Antarctic Ice Sheet mass balance is imperative to better understand its multi-decadal response to changes in climate and ocean forcing. Additionally, more accurate knowledge of contemporaneous mass balance is key for improved parameterisations in ice sheet models. The Antarctic Peninsula has undergone rapid changes in mass balance and ice dynamics over the last two decades, with satellite observations showing the presence of grounding line retreat and increases in ice sheet velocity. This is particularly the case after the collapse of the Larsen A and B ice shelves in 1995 and 2002, and more recently the glaciers draining the southern Antarctic Peninsula. As a result, this region provides analogues for future ice sheet response to ice shelf collapse in other regions of Antarctica.&amp;#160;&lt;/p&gt;&lt;p&gt;Despite the region&amp;#8217;s importance to understanding ice sheet dynamics, it is challenging to accurately assess mass balance due its geometry and mountainous topography. Conventional pulse-limited altimetry suffers from poor coverage and data loss over steep mountainous terrain, particularly before the launch of CryoSat-2 in 2010. In the case of gravimetry, the geometry of the region means the coarse spatial resolution of the GRACE mission (~300 km) cannot resolve small spatial scale glacier changes (particularly over northern Antarctic Peninsula) and suffers from signal leakage into the ocean. For the mass budget approach, the challenge of accurately modelling surface mass balance over the region&amp;#8217;s mountainous topography coupled with the sparsity of ice thickness observations at the grounding line for many sectors can result in large uncertainties. As a result, it can be difficult to reconcile the results from different conventional approaches in this region.&amp;#160;&lt;/p&gt;&lt;p&gt;To resolve this, we have developed and optimised the BHM framework used previously over the Antarctic Ice Sheet to specifically investigate the Antarctic Peninsula. This enables each latent process driving ice sheet mass change to be resolved at a higher spatial resolution compared to previous implementations across Antarctica as a whole. The new regional solution also incorporates more recent and higher resolution observations including: CryoSat-2 swath altimetry, stereo-image DEM differencing and NASA Operation Ice Bridge laser altimetry elevation rates. This is the first time such a range of observations of varying spatio-temporal resolutions will be combined into one assessment for the region. We will present results from the regionally optimised model from 2003 until present, including basin-scale mass trends and changes in spatial latent processes at an annual resolution. Additionally, we will discuss future opportunities, such as extending the record from this approach into the next decade and further understanding of the GIA response in this region.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Tom Mitcham ◽  
G. Hilmar Gudmundsson ◽  
Jonathan L. Bamber

Abstract. The Antarctic Peninsula has seen rapid and widespread changes in the extent of its ice shelves in recent decades, including the collapse of the Larsen A and B ice shelves in 1995 and 2002, respectively. In 2017 the Larsen C ice shelf (LCIS) lost around 10 % of its area by calving one of the largest icebergs ever recorded (A68). This has raised questions about the structural integrity of the shelf and the impact of any changes in its extent on the flow of its tributary glaciers. In this work, we used an ice flow model to study the instantaneous impact of changes in the thickness and extent of the LCIS on ice dynamics, and in particular on changes in the grounding line flux (GLF). We initialised the model to a pre-A68 calving state, and first replicated the calving of the A68 iceberg. We found that there was a limited impact on upstream flow – with speeds increasing by less than 10 % across almost all of the shelf – and a 0.5 % increase in GLF. This result is supported by observations of ice velocity made before and after the calving event. We then perturbed the ice-shelf geometry through idealised calving and thinning experiments of increasing magnitude. We found that significant changes to the geometry of the ice shelf, through both calving and thinning, resulted in limited changes in GLF. For example, to produce a doubling of GLF from calving, the new calving front needed to be moved to 5 km from the grounding line, removing almost the entire ice shelf. For thinning, over 200 m of the ice-shelf thickness had to be removed across the whole shelf to produce a doubling of GLF. Calculating the increase in GLF (607 %) after removing the entire ice shelf allowed us to quantify the total amount of buttressing provided by the LCIS. From this, we identified that the region of the ice shelf in the first 5 km downstream of the grounding line provided over 80 % of the buttressing capacity of the shelf. This is due to the large resistive stresses generated in the narrow, local embayments downstream of the largest tributary glaciers.


1992 ◽  
Vol 338 (1285) ◽  
pp. 235-242 ◽  

The prediction of short-term (100 year) changes in the mass balance of ice sheets and longer-term (1000 years) variations in their ice volumes is important for a range of climatic and environmental models. The Antarctic ice sheet contains between 24 M km 3 and 29 M km 3 of ice, equivalent to a eustatic sea level change of between 60m and 72m. The annual surface accumulation is estimated to be of the order of 2200 Gtonnes, equivalent to a sea level change of 6 mm a -1 . Analysis of the present-day accumulation regime of Antarctica indicates that about 25% ( ca. 500 Gt a -1 ) of snowfall occurs in the Antarctic Peninsula region with an area of only 6.8% of the continent. To date most models have focused upon solving predictive algorithms for the climate-sensitivity of the ice sheet, and assume: (i) surface mass balance is equivalent to accumulation (i.e. no melting, evaporation or deflation); (ii) percentage change in accumulation is proportional to change in saturation mixing ratio above the surface inversion layer; and (iii) there is a linear relation between mean annual surface air tem perature and saturation mixing ratio. For the A ntarctic Peninsula with mountainous terrain containing ice caps, outlet glaciers, valley glaciers and ice shelves, where there can be significant ablation at low levels and distinct climatic regimes, models of the climate response must be more complex. In addition, owing to the high accumulation and flow rates, even short- to medium -term predictions must take account of ice dynamics. Relationships are derived for the mass balance sensitivity and, using a model developed by Hindmarsh, the transient effects of ice dynamics are estimated. It is suggested that for a 2°C rise in mean annual surface tem perature over 40 years, ablation in the A ntarctic Peninsula region would contribute at least 1.0 mm to sea level rise, offsetting the fall of 0.5 mm contributed by increased accum ulation.


2020 ◽  
Vol 66 (260) ◽  
pp. 1064-1078
Author(s):  
Vikram Goel ◽  
Kenichi Matsuoka ◽  
Cesar Deschamps Berger ◽  
Ian Lee ◽  
Jørgen Dall ◽  
...  

AbstractIce rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.


2020 ◽  
Author(s):  
Mariel Dirscherl ◽  
Andreas Dietz ◽  
Celia Baumhoer ◽  
Christof Kneisel ◽  
Claudia Kuenzer

&lt;p&gt;Antarctica stores ~91 % of the global ice mass making it the biggest potential contributor to global sea-level-rise. With increased surface air temperatures during austral summer as well as in consequence of global climate change, the ice sheet is subject to surface melting resulting in the formation of supraglacial lakes in local surface depressions. Supraglacial meltwater features may impact Antarctic ice dynamics and mass balance through three main processes. First of all, it may cause enhanced ice thinning thus a potentially negative Antarctic Surface Mass Balance (SMB). Second, the temporary injection of meltwater to the glacier bed may cause transient ice speed accelerations and increased ice discharge. The last mechanism involves a process called hydrofracturing i.e. meltwater-induced ice shelf collapse caused by the downward propagation of surface meltwater into crevasses or fractures, as observed along large coastal sections of the northern Antarctic Peninsula. Despite the known impact of supraglacial meltwater features on ice dynamics and mass balance, the Antarctic surface hydrological network remains largely understudied with an automated method for supraglacial lake and stream detection still missing. Spaceborne remote sensing and data of the Sentinel missions in particular provide an excellent basis for the monitoring of the Antarctic surface hydrological network at unprecedented spatial and temporal coverage.&lt;/p&gt;&lt;p&gt;In this study, we employ state-of-the-art machine learning for automated supraglacial lake and stream mapping on basis of optical Sentinel-2 satellite data. With more detail, we use a total of 72 Sentinel-2 acquisitions distributed across the Antarctic Ice Sheet together with topographic information to train and test the selected machine learning algorithm. In general, our machine learning workflow is designed to discriminate between surface water, ice/snow, rock and shadow being further supported by several automated post-processing steps. In order to ensure the algorithm&amp;#8217;s transferability in space and time, the acquisitions used for training the machine learning model are chosen to cover the full circle of the 2019 melt season and the data selected for testing the algorithm span the 2017 and 2018 melt seasons. Supraglacial lake predictions are presented for several regions of interest on the East and West Antarctic Ice Sheet as well as along the Antarctic Peninsula and are validated against randomly sampled points in the underlying Sentinel-2 RGB images. To highlight the performance of our model, we specifically focus on the example of the Amery Ice Shelf in East Antarctica, where we applied our algorithm on Sentinel-2 data in order to present the temporal evolution of maximum lake extent during three consecutive melt seasons (2017, 2018 and 2019).&lt;/p&gt;


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2018 ◽  
Author(s):  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
Anais Orsi ◽  
Vincent Favier ◽  
...  

Abstract. The Antarctic ice sheet mass balance is a major component of the sea level budget and results from the difference of two fluxes of a similar magnitude: ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Separately modelling ice dynamics and surface mass balance is the only way to project future trends. In addition, mass balance studies frequently use regional climate models (RCMs) outputs as an alternative to observed fields because SMB observations are particularly scarce on the ice sheet. Here we evaluate new simulations of the polar RCM MAR forced by three reanalyses, ERA-Interim, JRA-55 and MERRA2, for the period 1979–2015, and we compare our results to the last outputs of the RCM RACMO2 forced by ERA-Interim. We show that MAR and RACMO2 perform similarly well in simulating coast to plateau SMB gradients, and we find no significant differences in their simulated SMB when integrated over the ice sheet or its major basins. More importantly, we outline and quantify missing processes in both RCMs. Along stake transects, we show that both models accumulate too much snow on crests, and not enough snow in valleys, as a result of erosion-deposition processes not included in MAR, where the drifting snow module has been switched off, and probably underestimated in RACMO2 by a factor of three. As a consequence, the amount of drifting snow sublimating in the atmospheric boundary layer remains a potentially large mass sink needed to be better constrained. Moreover, MAR generally simulates larger SMB and snowfall amounts than RACMO2 inland, whereas snowfall rates are significantly lower in MAR than in RACMO2 at the ice sheet margins. This divergent behaviour at the margins results from differences in model parameterisations, as MAR explicitly advects precipitating particles through the atmospheric layers and sublimates snowflakes in the undersaturated katabatic layer, whereas in RACMO2 precipitation is added to the surface without advection through the atmosphere. Consequently, we corroborate a recent study concluding that sublimation of precipitation in the low-level atmospheric layers is a significant mass sink for the Antarctic SMB, as it may represent ∼ 240 ± 25 Gt yr-1 of difference in snowfall between RACMO2 and MAR for the period 1979–2015, which is 10 % of the simulated snowfall loaded on the ice sheet and more than twice the surface snow sublimation as currently simulated by MAR.


Sign in / Sign up

Export Citation Format

Share Document