Contrasting thermal responses of permafrost to winter warming events under different snow regimes in the subarctic

Author(s):  
Didac Pascual Descarrega ◽  
Margareta Johansson

<p>Winter warming events (WWE) in the Swedish subarctic are abrupt and short-lasting (hours-to-days) events of positive air temperature that occur during wintertime, sometimes accompanied by rainfall (rain on snow; ROS). These events cause changes in snow properties, which affect the below-ground thermal regime that, in turn, controls a suite of ecosystem processes ranging from microbial activity to permafrost and vegetation dynamics. For instance, winter melting can cause ground warming due to the shortening of the snow cover season, or ground cooling as the reduced snow depth and the formation of refrozen layers of high thermal conductivity at the base of the snowpack facilitate the release of soil heat. Apart from these interacting processes, the overall impacts of WWE on ground temperatures may also depend on the timing of the events and the preceding snowpack characteristics. The frequency and intensity of these events in the Arctic, including the Swedish subarctic, has increased remarkably during the recent decades, and is expected to increase even further during the 21st Century. In addition, snow depth (not necessarily snow duration) is projected to increase in many parts of the Arctic, including the Swedish subarctic. In 2005, a manipulation experiment was set up on a lowland permafrost mire in the Swedish subarctic, to simulate projected future increases in winter precipitation. In this study, we analyse this 15-year record of ground temperature, active layer thickness, and meteorological variables, to evaluate the short- (days to weeks) and long-term (up to 1 year) impacts of WWE on the thermal dynamics of lowland permafrost, and provide new insights into the influence of the timing of WWE and the underlying snowpack conditions on the thermal response of permafrost. On the short-term, the thermal responses to WWE are faster and stronger in areas with a shallow snowpack (5-10 cm), although these responses are more persistent in areas with a thicker snowpack (>25 cm), especially after ROS events. On the long term, permafrost in areas with a thicker snowpack exhibit a more durable warming response to WWE that results in thicker active layers at the end of the season. On the contrary, we do not observe a correlation between WWE and end of season active layer thickness in areas with a shallow snowpack. </p>

2013 ◽  
Vol 7 (2) ◽  
pp. 631-645 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of active-layer thickness (ALT) in permafrost regions during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while the increase in ALT in North American watersheds was not significant. However, ALT in the North American watersheds has been negatively anomalous since 1990 when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher annual thawing index (ATI) in the Mackenzie and Yukon basins has been offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing ATI together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. The different ALT anomalies between Eurasian and North American watersheds highlight increased importance of the variability of hydrological variables.


2012 ◽  
Vol 6 (4) ◽  
pp. 2537-2574 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT) during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.


2019 ◽  
Vol 5 (4) ◽  
pp. 202-217 ◽  
Author(s):  
Evan J. Wilcox ◽  
Dawn Keim ◽  
Tyler de Jong ◽  
Branden Walker ◽  
Oliver Sonnentag ◽  
...  

The overall spatial and temporal influence of shrub expansion on permafrost is largely unknown due to uncertainty in estimating the magnitude of many counteracting processes. For example, shrubs shade the ground during the snow-free season, which can reduce active layer thickness. At the same time, shrubs advance the timing of snowmelt when they protrude through the snow surface, thereby exposing the active layer to thawing earlier in spring. Here, we compare 3056 in situ frost table depth measurements split between mineral earth hummocks and organic inter-hummock zones across four dominant shrub–tundra vegetation types. Snow-free date, snow depth, hummock development, topography, and vegetation cover were compared to frost table depth measurements using a structural equation modeling approach that quantifies the direct and combined interacting influence of these variables. Areas of birch shrubs became snow free earlier regardless of snow depth or hillslope aspect because they protruded through the snow surface, leading to deeper hummock frost table depths. Projected increases in shrub height and extent combined with projected decreases in snowfall would lead to increased shrub protrusion across the Arctic, potentially deepening the active layer in areas where shrub protrusion advances the snow-free date.


Author(s):  
J. Touyz ◽  
D. A. Streletskiy ◽  
F. E. Nelson ◽  
T. V. Apanasovich

The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model’s stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.


2011 ◽  
Vol 5 (5) ◽  
pp. 2465-2481 ◽  
Author(s):  
Q. Wu ◽  
T. Zhang ◽  
Y. Liu

Abstract. In this study, we investigated changes in active layer thickness (ALT) and permafrost temperatures at different depths using data from permafrost monitoring network along the Qinghai-Xizang (Tibet) Railway since 2005. Among sites, average ALT is about 3.1 m with a range from about 1.1 m to 4.9 m. From 2006 through 2010, ALT has increased at a rate of about 6.3 cm a−1. The mean rising rate of permafrost temperature at the depth of 6.0 m is about 0.02 °C a−1 estimated by linear regression using five years of data, and the mean rising rate of mean annual ground temperature (MAGT) at depth of zero amplitude is about 0.012 °C a−1. Changes for colder permafrost (MAGT < −1.0 °C) is greater than that for relatively warmer permafrost (MAGT > −1.0 °C). This is consistent with results observed in the Arctic and Subarctic.


2020 ◽  
Vol 17 (16) ◽  
pp. 4261-4279
Author(s):  
Inge Grünberg ◽  
Evan J. Wilcox ◽  
Simon Zwieback ◽  
Philip Marsh ◽  
Julia Boike

Abstract. Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued climate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous soil temperature distribution on small spatial scales. Moreover, the link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature loggers were installed at 1–3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied between −3.7 and 0.1 ∘C within 0.5 km2. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in snow depth are strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil temperature is associated with deep active layers in the following summer for lichen and dwarf shrub tundra, we observed the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar below all vegetation types with an average summer topsoil temperature difference of less than 1 ∘C. Moreover, there is no significant relationship between summer soil temperature or cumulative positive degree days and active layer thickness. Altogether, our results demonstrate the high spatial variability of topsoil temperature and active layer thickness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on remote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and permafrost thaw.


2015 ◽  
Vol 9 (3) ◽  
pp. 3137-3163 ◽  
Author(s):  
E. Jafarov ◽  
K. Schaefer

Abstract. Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. To reduce the uncertainty associated with the modeling of the permafrost carbon feedback it is important to start with the observed soil carbon distribution and to better address permafrost thermal and carbon dynamics. We used the recent Northern Circumpolar Soil Carbon Dataset to simulate present soil organic carbon (SOC) distribution in permafrost-affected soils under the steady state climate forcing. We implemented a dynamic surface organic layer with vertical carbon redistribution and dynamic root growth controlled by active layer thickness to improve modeling of the permafrost thermodynamics. Our results indicate that a dynamic surface organic layer improved permafrost thermal dynamics and simulated active layer thickness, allowing better simulation of the observed SOC densities and their spatial distribution.


2002 ◽  
Vol 39 (11) ◽  
pp. 1657-1674 ◽  
Author(s):  
J Ross Mackay ◽  
C R Burn

Active-layer thickness, snow depth, minimum soil temperatures, near-surface ground ice, soil heave, and permafrost temperatures have been measured for over 20 years following the 1978 artificial drainage of Lake Illisarvik. Measurements of active-layer thickness and other variables have been made at 25-m intervals along the major and minor axes of the oval-shaped drained-lake bed. Permafrost aggradation commenced in the lake bottom during the first winter following drainage. Before the establishment of vegetation, there was little snow cover, minimum ground temperatures were low, and the active layer was relatively thin. However, both snow depth and minimum ground temperatures have risen where vegetation has grown, the active layer has thickened, and in response, the temperature in permafrost has gradually increased. In the lake bottom, the change in snow depth associated with vegetation growth has been the dominant control on variation in active-layer thickness and not summer weather conditions, which are well correlated with thaw depths along an active-layer course established in the adjacent tundra. Changes in elevation of the surface of the lake bed have been measured with respect to some 40 bench marks anchored in permafrost, and indicate vertical movements of the surface associated with frost heave, thaw subsidence, and the growth of aggradational ice. The ground ice content of near-surface permafrost determined by drilling is in close agreement with the measured uplift of the lake bed. The rate of growth of aggradational ice has been ~0.5 cm a–1 over 20 years.


2013 ◽  
Vol 26 (6) ◽  
pp. 1877-1900 ◽  
Author(s):  
Charles D. Koven ◽  
William J. Riley ◽  
Alex Stern

Abstract The authors analyze global climate model predictions of soil temperature [from the Coupled Model Intercomparison Project phase 5 (CMIP5) database] to assess the models’ representation of current-climate soil thermal dynamics and their predictions of permafrost thaw during the twenty-first century. The authors compare the models’ predictions with observations of active layer thickness, air temperature, and soil temperature and with theoretically expected relationships between active layer thickness and air temperature annual mean- and seasonal-cycle amplitude. Models show a wide range of current permafrost areas, active layer statistics (cumulative distributions, correlations with mean annual air temperature, and amplitude of seasonal air temperature cycle), and ability to accurately model the coupling between soil and air temperatures at high latitudes. Many of the between-model differences can be traced to differences in the coupling between either near-surface air and shallow soil temperatures or shallow and deeper (1 m) soil temperatures, which in turn reflect differences in snow physics and soil hydrology. The models are compared with observational datasets to benchmark several aspects of the permafrost-relevant physics of the models. The CMIP5 models following multiple representative concentration pathways (RCP) show a wide range of predictions for permafrost loss: 2%–66% for RCP2.6, 15%–87% for RCP4.5, and 30%–99% for RCP8.5. Normalizing the amount of permafrost loss by the amount of high-latitude warming in the RCP4.5 scenario, the models predict an absolute loss of 1.6 ± 0.7 million km2 permafrost per 1°C high-latitude warming, or a fractional loss of 6%–29% °C−1.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Olga I. Gabysheva ◽  
Viktor A. Gabyshev ◽  
Sophia Barinova

Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual components of nutrients in the rivers of Eastern Siberia changes depending on the active layer thickness of the permafrost (ALT) and to elucidate whether the ALT is a factor that can control nutrient flux to the Arctic Ocean. The method of canonical correlation analysis was applied to the data on the concentration of nutrients in the 12 largest rivers of Eastern Siberia and the active layer thickness in their catchments. We found that the concentration of nutrients such as ammonium ion (NH4) and total phosphorus (Ptotal) in river waters is higher in catchments with a deeper active layer. The waters of the mountain rivers in the south of the region (the Chara and Vitim rivers) are the richest in nutrients. Arctic rivers such as the Indigirka and Anabar were low in nutrients. The permeability of soils also affects the discharge of nutrients into rivers with surface runoff. We conclude that in the future, in the context of global climatic changes and the projected deepening of the active layer throughout the permafrost zone of the Northern Hemisphere, an increase in the supply of nutrients to the Arctic Ocean is possible.


Sign in / Sign up

Export Citation Format

Share Document