The MIPAS climatology of BrONO2: a test for stratospheric bromine chemistry

Author(s):  
Michael Höpfner ◽  
Oliver Kirner ◽  
Gerald Wetzel ◽  
Björn-Martin Sinnhuber ◽  
Florian Haenel ◽  
...  

<p>Besides chlorine, bromine is the major halogen species affecting stratospheric ozone with both anthropogenic and natural sources. Despite the significantly lower concentrations of bromine in the atmosphere, its potential for ozone depletion is similar to that of chlorine. An important prerequisite for the effectiveness of bromine ozone destruction cycles versus those of chlorine is the larger instability of bromine reservoir gases, especially the faster photolysis of bromine nitrate (BrONO<sub>2</sub>) compared to chlorine nitrate (ClONO<sub>2</sub>). With BrONO<sub>2</sub> abundances in the stratosphere available from observations, (1) homogeneous, heterogeneous as well as photochemical processes involving bromine as implemented in atmospheric models can be assessed, and (2) independent information on the total stratospheric bromine content can be gained which is important, e.g. to analyse the amount of short-lived bromocarbons entering the stratosphere.</p><p>The first detection of BrONO<sub>2</sub> in the atmosphere had been achieved by analysis of infrared limb-emission spectra from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat satellite (doi: 10.5194/acp-9-1735-2009). On availability of improved infrared cross-sections, this was followed by the analysis of the behaviour of BrONO<sub>2</sub> during sunrise and sunset through MIPAS balloon observations (doi: 10.5194/acp-17-14631-2017). Here we present a novel dataset of global stratospheric BrONO<sub>2</sub> distributions based on the recently available MIPAS version 8 dataset of calibrated level-1b spectra. The altitude profiles of BrONO<sub>2</sub> volume mixing ratios are zonally averaged in 10° latitude and 3-day bins, separated between day- and night-time observations, with a vertical resolution of 3-8 km between 15 and 35 km altitude for the whole MIPAS period from July 2002 until April 2012. The typical characteristics of this new dataset will be discussed. Furthermore, we will compare it to a multi-annual simulation of the chemistry climate model EMAC. Specific differences between observation and model simulation of BrONO<sub>2</sub> will be highlighted and discussed by means of sensitivity 1-d model runs. Finally, a time series of the derived stratospheric Br<sub>y</sub> content normalized to the time of the entry into the stratosphere on basis of MIPAS age-of-air information will be discussed with regard to estimated uncertainties as well as independent observations.</p>

2012 ◽  
Vol 12 (14) ◽  
pp. 6581-6592 ◽  
Author(s):  
G. Wetzel ◽  
H. Oelhaf ◽  
O. Kirner ◽  
F. Friedl-Vallon ◽  
R. Ruhnke ◽  
...  

Abstract. The winter 2009/2010 was characterized by a strong Arctic vortex with extremely cold mid-winter temperatures in the lower stratosphere associated with an intense activation of reactive chlorine compounds (ClOx) from reservoir species. Stratospheric limb emission spectra were recorded during a flight of the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) from Kiruna (Sweden) on 24 January 2010 inside the Arctic vortex. Several fast limb sequences of spectra (in time steps of about 10 min) were measured from nighttime photochemical equilibrium to local noon allowing the retrieval of chlorine- and nitrogen-containing species which change rapidly their concentration around the terminator between night and day. Mixing ratios of species like ClO, NO2, and N2O5 show significant changes around sunrise, which are temporally delayed due to polar stratospheric clouds reducing the direct radiative flux from the sun. ClO variations were derived for the first time from MIPAS-B spectra. Daytime ClO values of up to 1.6 ppbv are visible in a broad chlorine activated layer below 26 km correlated with low values (below 0.1 ppbv) of the chlorine reservoir species ClONO2. Observations are compared and discussed with calculations performed with the 3-dimensional Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry). Mixing ratios of the species ClO, NO2, and N2O5 are well reproduced by the model during night and noon. However, the onset of ClO production and NO2 loss around the terminator in the model is not consistent with the measurements. The MIPAS-B observations along with Tropospheric Ultraviolet-Visible (TUV) radiation model calculations suggest that polar stratospheric clouds lead to a delayed start followed by a faster increase of the photodissoziation of ClOOCl and NO2 near the morning terminator since stratospheric clouds alter the direct and the diffuse flux of solar radiation. These effects are not considered in the EMAC model simulations which assume a cloudless atmosphere.


2005 ◽  
Vol 5 (6) ◽  
pp. 12031-12066
Author(s):  
N. Glatthor ◽  
T. von Clarmann ◽  
H. Fischer ◽  
B. Funke ◽  
S. Gil-López ◽  
...  

Abstract. We report on the dependance of ozone volume mixing ratio profiles, retrieved from spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on different retrieval setups such as different a-priori profiles, regularization strengths and spectral regions used for analysis. MIPAS is a spaceborne limb-viewing Fourier transform infrared (FTIR) emission spectrometer, by which vertical profiles of various trace gases can be measured simultaneously. Purpose of this investigation is to check and to optimize the current retrieval setup. The choice of different a-priori profiles, of a different approach to retrieve the continuum radiation, and of a weaker regularization than in the reference data version (V2_O3_2) causes only small to moderate deviations of up to ±0.2, −0.3 and ±0.5 ppmv, respectively, in the retrieved ozone volume mixing ratios below 60 km altitude. Use of different microwindow sets optimized for polar, mid-latitude and tropical conditions results in deviations of up to ±1.5 ppmv in the altitude region of the ozone maximum, exceeding the total estimated retrieval error of 0.65 ppmv (polar regions) – 1.2 ppmv (tropics) in this height region. Therefore, to avoid latitudinal artefacts, one fixed set of microwindows is considered more appropriate for retrieval of a whole orbit rather than a latitude-dependent microwindow selection. For this task the microwindow set optimized for the polar atmosphere was found to be better suitable than its midlatitude and tropical counterparts. The results from the different microwindow sets, which variably cover MIPAS spectral bands A (685–970 cm−1) and AB (1020–1170 cm−1), indicated a positive bias of up to 1ppmv between the ozone maxima retrieved from the ozone emission in MIPAS band AB only and from combined analysis of MIPAS bands A and AB. Further investigations showed that this discrepancy can be caused by a bias between the radiance calibration of level-1B spectra of bands A and AB or by a bias between the spectroscopic data used in bands A and AB.


2012 ◽  
Vol 12 (2) ◽  
pp. 4867-4900
Author(s):  
G. Wetzel ◽  
H. Oelhaf ◽  
F. Friedl-Vallon ◽  
O. Kirner ◽  
A. Kleinert ◽  
...  

Abstract. The winter 2009/2010 was characterized by a strong Arctic vortex with extremely cold mid-winter temperatures in the lower stratosphere associated with an intense activation of reactive chlorine compounds (ClOx). In order to assess the capacities of state-of-the-art chemistry models to predict polar stratospheric chemistry, stratospheric limb emission spectra were recorded during a flight of the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) from Kiruna (Sweden) on 24 January 2010 inside the Arctic vortex. Several fast limb sequences of spectra (in time steps of about 10 min) were measured from nighttime photochemical equilibrium to local noon allowing the retrieval of chlorine- and nitrogen-containing species which change quickly their concentration around the terminator between night and day. Mixing ratios of species like ClO, NO2, and N2O5 show significant changes around sunrise, which are temporally delayed due to shadowing of the lower stratosphere by upper tropospheric and polar stratospheric clouds. ClO variations were derived for the first time from MIPAS-B spectra. Daytime ClO values of up to 1.6 ppbv are visible in a broad chlorine activated layer below 26 km correlated with low values (close to zero) of its reservoir species ClONO2. Observations are compared and discussed with calculations performed with the 3-dimensional Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry). Mixing ratios of the species ClO, NO2, and N2O5 are fairly well reproduced by the model during photochemical equilibrium. However, since the model assumes cloudless illumination, simulated concentration changes around sunrise start earlier but less quickly compared to the observed variation of the species concentration.


2021 ◽  
Author(s):  
Michael Höpfner ◽  
Oliver Kirner ◽  
Gerald Wetzel ◽  
Björn-Martin Sinnhuber ◽  
Florian Haenel ◽  
...  

Abstract. We present the first observational dataset of vertically resolved global stratospheric BrONO2 distributions from July 2002 until April 2012, and compare them to results of the atmospheric chemical climate model EMAC. The retrieved distributions are based on space-borne measurements of infrared limb-emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. The derived vertical profiles of BrONO2 volume mixing ratios represent 10° latitude bins and three-day means, separated into sunlit and observations in the dark. The estimated uncertainties are around 1–4 pptv caused by spectral noise for single profiles as well as for further parameter and systematic errors which may not improve by averaging. Vertical resolutions range from 3 to 8 km between 15 and 35 km altitude. All leading modes of spatial and temporal variability of stratospheric BrONO2 in the observations are well replicated by the model simulations: the large diurnal variability, the low values during polar winter as well as the maximum values at mid- and high latitudes during summer. Three major differences between observations and model results are observed: (1) a model underestimation of enhanced BrONO2 in the polar winter stratosphere above about 30 km of up to 15 pptv, (2) up to 8 pptv higher modelled values than observed globally in the lower stratosphere up to 25 km most obvious during night, and (3) up to 5 pptv lower modelled concentrations at tropical latitudes between 27 and 32 km during sunlit conditions. (1) is explained by the model missing enhanced NOx produced in the mesosphere and lower thermosphere subsiding at high latitudes in winter. This is the first time that observational evidence for enhancement of BrONO2 caused by mesospheric NOx production is reported. The other major inconsistencies (2,3) between EMAC model results and observations are studied by sensitivity runs with a 1d model. These tentatively hint to a model underestimation of heterogeneous loss of BrONO2 in the lower stratosphere, a too low simulated production of BrONO2 during day as well as strongly underestimated BrONO2 volume mixing ratios when loss via reaction with O(3P) is considered additionally to photolysis. However, considering the uncertainty ranges of model parameters and of measurements, an unambiguous identification of the causes for the differences remains difficult. The observations have also been used to derive the total stratospheric bromine content relative to years of stratospheric entry between 1997 and 2007. With an average value of 21.2 ± 1.4 pptv of Bry at mid-latitudes where the modelled adjustment from BrONO2 to Bry is lowest, the MIPAS data agree with estimates of Bry derived from observations of BrO as well as from MIPAS-Balloon measurements of BrONO2.


2010 ◽  
Vol 3 (5) ◽  
pp. 1487-1507 ◽  
Author(s):  
M. Kiefer ◽  
E. Arnone ◽  
A. Dudhia ◽  
M. Carlotti ◽  
E. Castelli ◽  
...  

Abstract. We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat. In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This suggests that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic 2-D approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem may affect 1-D retrievals of infrared limb sounders, if the line of sight of the instrument has a significant component in the direction of the horizontal temperature variation.


2021 ◽  
Author(s):  
Jia Jia ◽  
Antti Kero ◽  
Niilo Kalakoski ◽  
Monika E. Szeląg ◽  
Pekka T. Verronen

<p>Recent studies reported up to a 10 % average decrease of lower stratospheric ozone at ∼ 20 km altitude following solar proton events (SPEs), based on superposed epoch analysis (SEA) of ozonesonde anomalies. Our study uses 49 SPEs that occurred after the launch of Aura MLS (2004–now) and 177 SPEs that occurred in the WACCM-D (Whole Atmosphere Community Climate Model with D-region ion chemistry) simulation period (1989–2012) to evaluate Arctic polar atmospheric ozone changes following SPEs. At the mesospheric altitudes a statistically significant ozone depletion is present. At the lower stratosphere (<25 km), SEA of the satellite dataset provides no solid evidence of any average direct SPE impact on ozone. In the individual case studies, we find only one potential case (January 2005) in which the lower-stratospheric ozone level was significantly decreased after the SPE onset (in both model simulation and MLS observation data). However, similar decreases could not be identified in other SPEs of similar or larger magnitude. We find a very good overall consistency between WACCM-D simulations and MLS observations of SPE-driven ozone anomalies both on average and for the individual cases, including case in January 2005.</p>


2020 ◽  
Author(s):  
Yangzhuoran Liu ◽  
Mariano Mertens ◽  
Maria Dolores Andrés Hernández ◽  
Midhun George ◽  
Vladyslav Nenakhov ◽  
...  

<p>Observations of tropospheric peroxy radicals are a key point for interpretation of the processing and transformation of polluted outflows from major populated centres (MPCs). A series of European MPCs are investigated by the project EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales). With this objective two airborne campaigns using the research platform HALO (High Altitude and LOng range aircraft) were carried out over Europe in summer 2017 and over east Asia in the intermonsoon period in 2018. The Institute of Environmental Physics (IUP) in Bremen (Germany) participated in both EMeRGe campaigns with the airborne measurement of the total sum of peroxy radicals, RO<sub>2</sub><sup>*</sup>, by using  the home made PeRCEAS instrument based on the combination of the PERCA (peroxy radical chemical amplification)  and CRDS (cavity ring down spectroscopy) techniques. One of the main purposes of the campaigns was the investigation of the characteristics and chemical transformation of MPC outflows at the local and regional scales.</p><p>During the EMeRGe campaign in Europe, air masses of different photochemical activity were measured, where RO<sub>2</sub><sup>*</sup> mixing ratios up to 100pptv being observed. In the present study the RO<sub>2</sub><sup>* </sup>observations for six measurement flights of EMeRGe in Europe have been compared with RO<sub>2</sub> (here defined as the sum of HO<sub>2 </sub>+ CH<sub>3</sub>O<sub>2 </sub>+ ISOOH + CH<sub>3</sub>CO<sub>3 </sub>+ CH<sub>3</sub>COCH<sub>2</sub>O<sub>2</sub>) simulated by using the MECO(n) model.</p><p>MECO(n) (MESSy-fied ECHAM and COSMO models nested n times), is  a global/regional chemistry-climate model developed by the MESSy consortium, which couples on-line the global chemistry-climate model EMAC with the regional chemistry-climate model COSMO-CLM/MESSy. The same anthropogenic emission inventory (EDGAR 4.3.1) as well as the same solver for chemical kinetics, involving complex tropospheric and stratospheric chemistry, are applied in EMAC and COSMO-CLM/MESSy.</p><p>Overall, the agreement between the measurements and model is reasonable for RO<sub>2</sub><sup>* </sup>observations below 40 pptv. Events with higher mixing ratios seem not to be well reproduced by the model but underestimated. Further details on the modelling and the result of the comparison will be presented.</p>


2020 ◽  
Author(s):  
Franziska Winterstein ◽  
Patrick Jöckel ◽  
Martin Dameris ◽  
Michael Ponater ◽  
Fabian Tanalski ◽  
...  

<p>Methane (CH<sub>4</sub>) is the second most important greenhouse gas, which atmospheric concentration is influenced by human activities and currently on a sharp rise. We present a study with numerical simulations using a Chemistry-Climate-Model (CCM), which are performed to assess possible consequences of strongly enhanced CH<sub>4</sub> concentrations in the Earth's atmosphere for the climate.</p><p>Our analysis includes experiments with 2xCH<sub>4</sub> and 5xCH<sub>4</sub> present day (2010) lower boundary mixing ratios using the CCM EMAC. The simulations are conducted with prescribed oceanic conditions, mimicking present day tropospheric temperatures as its changes are largely suppressed. By doing so we are able to investigate the quasi-instantaneous chemical impact on the atmosphere. We find that the massive increase in CH<sub>4</sub> strongly influences the tropospheric chemistry by reducing the OH abundance and thereby extending the tropospheric CH<sub>4</sub> lifetime as well as the residence time of other chemical pollutants. The region above the tropopause is impacted by a substantial rise in stratospheric water vapor (SWV). The stratospheric ozone (O<sub>3</sub>) column increases overall, but SWV induced stratospheric cooling also leads to enhanced ozone depletion in the Antarctic lower stratosphere. Regional  patterns of ozone change are affected by modification of stratospheric dynamics, i.e. increased tropical up-welling and stronger meridional transport  towards the polar regions. We calculate the net radiative impact (RI) of the 2xCH<sub>4</sub> experiment to be 0.69 W m<sup>-2</sup> and for the 5xCH<sub>4</sub> experiment to be 1.79 W m<sup>-2</sup>. A substantial part of the RI is contributed by chemically induced O<sub>3</sub> and SWV changes, in line with previous radiative forcing estimates and is for the first time splitted and spatially asigned to its chemical contributors.</p><p>This numerical study using a CCM with prescibed oceanic conditions shows the rapid responses to significantly enhanced CH<sub>4</sub> mixing ratios, which is the first step towards investigating the impact of possible strong future CH<sub>4</sub> emissions on atmospheric chemistry and its feedback on climate.</p>


2013 ◽  
Vol 13 (21) ◽  
pp. 10859-10871 ◽  
Author(s):  
C. Kalicinsky ◽  
J.-U. Grooß ◽  
G. Günther ◽  
J. Ungermann ◽  
J. Blank ◽  
...  

Abstract. The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) project in Kiruna (Sweden) from January to March 2010. This paper concentrates on the measurements taken during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of derived volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range (≈ 6–19 km) and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures, for example a part of the polar vortex and a vortex filament, which can be identified by means of O3–CFC-11 tracer–tracer correlations. The observations made during this flight are interpreted using the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere). Comparisons of the observations with the model results are used to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere, which partly have a vertical extent of only 1 km. Based on the good agreement between simulation and observation, we use artificial (passive) tracers, which represent different air mass origins (e.g. vortex, tropics), to further analyse the CRISTA-NF observations in terms of the composition of air mass origins. These passive tracers clearly illustrate the observation of filamentary structures that include tropical air masses. A characteristic of the Arctic winter 2009/10 was a sudden stratospheric warming in December that led to a split of the polar vortex. The vortex re-established at the end of December. Our passive tracer simulations suggest that large parts of the re-established vortex consisted to about 45% of high- and mid-latitude air.


2012 ◽  
Vol 5 (6) ◽  
pp. 1205-1228 ◽  
Author(s):  
W. Woiwode ◽  
H. Oelhaf ◽  
T. Gulde ◽  
C. Piesch ◽  
G. Maucher ◽  
...  

Abstract. The mid-infrared FTIR-limb-sounder Michelson Interferometer for Passive Atmospheric Sounding–STRatospheric aircraft (MIPAS-STR) was deployed onboard the research aircraft M55 Geophysica during the RECONCILE campaign (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) in the Arctic winter/spring 2010. From the MIPAS-STR measurements, vertical profiles and 2-dimensional vertical cross-sections of temperature and trace gases are retrieved. Detailed mesoscale structures of polar vortex air, extra vortex air and vortex filaments are identified in the results at typical vertical resolutions of 1 to 2 km and typical horizontal sampling densities of 45 or 25 km, depending on the sampling programme. Results are shown for the RECONCILE flight 11 on 2 March 2010 and are validated with collocated in-situ measurements of temperature, O3, CFC-11, CFC-12 and H2O. Exceptional agreement is found for the in-situ comparisons of temperature and O3, with mean differences (vertical profile/along flight track) of 0.2/−0.2 K for temperature and −0.01/0.05 ppmv for O3 and corresponding sample standard deviations of the mean differences of 0.7/0.6 K and 0.1/0.3 ppmv. The comparison of the retrieved vertical cross-sections of HNO3 from MIPAS-STR and the infrared limb-sounder Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere–New Frontiers (CRISTA–NF) indicates a high degree of agreement. We discuss MIPAS-STR in its current configuration, the spectral and radiometric calibration of the measurements and the retrieval of atmospheric parameters from the spectra. The MIPAS-STR measurements are significantly affected by continuum-like contributions, which are attributed to background aerosol and broad spectral signatures from interfering trace gases, and are important for mid-infrared limb-sounding in the Upper Troposphere/Lower Stratosphere (UTLS) region. Taking into consideration continuum-like effects, we present a scheme suitable for accurate retrievals of temperature and an extended set of trace gases, including the correction of a systematic line-of-sight offset.


Sign in / Sign up

Export Citation Format

Share Document