Direct radiative effects of smoke aerosol during the extreme 2019/2020 Australian wildfire season

Author(s):  
Bernd Heinold ◽  
Holger Baars ◽  
Matthew Christensen ◽  
Anne Kubin ◽  
Kevin Ohneiser ◽  
...  

<p>Record wildfires affected Australia from December 2019 to early 2020. Massive plumes of fire pollutants were lifted into the upper troposphere and even into the stratosphere by pyro-convection triggered by the intense heat of the fires. Subsequently the smoke aerosol was transported over thousands of kilometres eastwards at above 20 km altitude as Lidar observations in South America and satellite imagery show. Space and ground-based remote sensing of aerosol optical thickness indicate a temporary substantial increase in aerosol loading over large parts of the Southern Hemisphere, which offset the usual hemispheric contrast in aerosol. In addition to the massive impact on air quality at Australia’s east coast, this had important effects on the hemisphere-wide radiation budget.</p><p>We investigate the dispersal of the fire smoke aerosol and its radiative effects with the global aerosol-climate model ECHAM6.3-HAM2.3. Biomass burning emissions are prescribed by daily satellite-based estimates from the Global Fire Assimilation System (GFAS). As the horizontal model resolution is too coarse to explicitly resolve convection, the injection height of Australian fire smoke is set to heights between 5 and 15 km and varied in terms of sensitivity studies. The model results for late 2019 and early 2020 are evaluated with ground and satellite remote sensing measurements, as well as contrasted with smoke results for years with low Australian wildfire emissions. The sensitivity results show how the fire injection heights affect the evolution of the smoke plume but also what role radiatively induced self-lifting plays. According to the model, the 2019/20 Australian wildfires considerably perturbed the radiation budget of the Southern Hemisphere. Due to large transport heights relative to clouds and a long lifetime of smoke particles in the stratosphere, the solar irradiance at ground averaged from January to March 2020 decreased by more than 1 W m<sup>-2</sup> for the Southern Hemisphere, which corresponds roughly to the short-term cooling caused by a large volcanic eruption, while the elevated smoke layers experienced significant absorptive heating.</p><p>Considering the recent series of extreme wildfires globally and their probably further increasing occurance in a changing climate,  these results indicate a need for larger attention to pyro-convection in global climate modelling.</p>

2021 ◽  
Author(s):  
Ramiro Checa-Garcia ◽  
Didier Didier Hauglustaine ◽  
Yves Balkanski ◽  
Paola Formenti

<p>Glyoxal (GL) and methylglyoxal (MGL) are the smallest di-carbonyls present in the atmosphere. They hydrate easily, a process that is followed by an oligomerisation. As a consequence, it is considered that they participate actively in the formation of secondary organic aerosols (SOA) and therefore, they are being introduced in the current climate models with interactive chemistry to assess their importance on atmospheric chemistry. In our study we present the introduction of glyoxal in the INCA global model. A new closed set of gas-phase  reactions is analysed first with a box model. Then the simulated global distribution of glyoxal by the global climate model is compared with satellite observations. We show that the oxidation of volatile organic compounds and acetylene, together with the photolysis of more complex di-carbonyls allows us to reproduce well glyoxal seasonal cycle in the tropics but it requires an additional sink in several northern hemispheric regions. Additional sensitivity studies are being conducted by introducing  GL and MGL interactions with dust and SOA according to new uptake  coefficients obtained by dedicated experiments in the CESAM instrument (Chamber of Experimental Simulation of Atmospheric Multiphases). The effects of these heterogeneous chemistry processes will be quantified in the light of the new chamber measurements  and also evaluated in terms of optical properties of aged dust aerosol  and the changes in direct radiative effects  of the involved aerosol species.</p>


2020 ◽  
Vol 13 (2) ◽  
pp. 673-684
Author(s):  
Dongmin Lee ◽  
Lazaros Oreopoulos ◽  
Nayeong Cho

Abstract. We revisit the concept of the cloud vertical structure (CVS) classes we have previously employed to classify the planet's cloudiness (Oreopoulos et al., 2017). The CVS classification reflects simple combinations of simultaneous cloud occurrence in the three standard layers traditionally used to separate low, middle, and high clouds and was applied to a dataset derived from active lidar and cloud radar observations. This classification is now introduced in an atmospheric global climate model, specifically a version of NASA's GEOS-5, in order to evaluate the realism of its cloudiness and of the radiative effects associated with the various CVS classes. Such classes can be defined in GEOS-5 thanks to a subcolumn cloud generator paired with the model's radiative transfer algorithm, and their associated radiative effects can be evaluated against observations. We find that the model produces 50 % more clear skies than observations in relative terms and produces isolated high clouds that are slightly less frequent than in observations, but optically thicker, yielding excessive planetary and surface cooling. Low clouds are also brighter than in observations, but underestimates of the frequency of occurrence (by ∼20 % in relative terms) help restore radiative agreement with observations. Overall the model better reproduces the longwave radiative effects of the various CVS classes because cloud vertical location is substantially constrained in the CVS framework.


2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2020 ◽  
Author(s):  
Julia Lockwood ◽  
Erika Palin ◽  
Galina Guentchev ◽  
Malcolm Roberts

<p>PRIMAVERA is a European Union Horizon2020 project about creating a new generation of advanced and well-evaluated high-resolution global climate models, for the benefit of governments, business and society in general. The project has been engaging with several sectors, including finance, transport, and energy, to understand the extent to which any improved process understanding arising from high-resolution global climate modelling can – in turn – help with using climate model output to address user needs.</p><p>In this talk we will outline our work for the finance and (re)insurance industries.  Following consultation with members of the industry, we are using PRIMAVERA climate models to generate a European windstorm event set for use in catastrophe modelling and risk analysis.  The event set is generated from five different climate models, each run at a selection of resolutions ranging from 18-140km, covering the period 1950-2050, giving approximately 1700 years of climate model data in total.  High-resolution climate models tend to have reduced biases in storm track position (which is too zonal in low-resolution climate models) and windstorm intensity.  We will compare the properties of the windstorm footprints and associated risk across the different models and resolutions, to assess whether the high-resolution models lead to improved estimation of European windstorm risk.  We will also compare windstorm risk in present and future climates, to see if a consistent picture emerges between models.  Finally we will address the question of whether the event sets from each PRIMAVERA model can be combined to form a multi-model event set ensemble covering thousands of years of windstorm data.</p>


2005 ◽  
Vol 5 (4) ◽  
pp. 1053-1123 ◽  
Author(s):  
M. Kanakidou ◽  
J. H. Seinfeld ◽  
S. N. Pandis ◽  
I. Barnes ◽  
F. J. Dentener ◽  
...  

Abstract. The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.


2015 ◽  
Vol 29 (1) ◽  
pp. 17-35 ◽  
Author(s):  
J. F. Scinocca ◽  
V. V. Kharin ◽  
Y. Jiao ◽  
M. W. Qian ◽  
M. Lazare ◽  
...  

Abstract A new approach of coordinated global and regional climate modeling is presented. It is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2. CanRCM4 was developed specifically to downscale climate predictions and climate projections made by its parent global model. The close association of a regional climate model (RCM) with a parent global climate model (GCM) offers novel avenues of model development and application that are not typically available to independent regional climate modeling centers. For example, when CanRCM4 is driven by its parent model, driving information for all of its prognostic variables is available (including aerosols and chemical species), significantly improving the quality of their simulation. Additionally, CanRCM4 can be driven by its parent model for all downscaling applications by employing a spectral nudging procedure in CanESM2 designed to constrain its evolution to follow any large-scale driving data. Coordination offers benefit to the development of physical parameterizations and provides an objective means to evaluate the scalability of such parameterizations across a range of spatial resolutions. Finally, coordinating regional and global modeling efforts helps to highlight the importance of assessing RCMs’ value added relative to their driving global models. As a first step in this direction, a framework for identifying appreciable differences in RCM versus GCM climate change results is proposed and applied to CanRCM4 and CanESM2.


2013 ◽  
Vol 70 (7) ◽  
pp. 2120-2136 ◽  
Author(s):  
Hyun-Joo Choi ◽  
Hye-Yeong Chun

Abstract The excessively strong polar jet and cold pole in the Southern Hemisphere winter stratosphere are systematic biases in most global climate models and are related to underestimated wave drag in the winter extratropical stratosphere—namely, missing gravity wave drag (GWD). Cumulus convection is strong in the winter extratropics in association with storm-track regions; thus, convective GWD could be one of the missing GWDs in models that do not adopt source-based nonorographic GWD parameterizations. In this study, the authors use the Whole Atmosphere Community Climate Model (WACCM) and show that the zonal-mean wind and temperature biases in the Southern Hemisphere winter stratosphere of the model are significantly alleviated by including convective GWD (GWDC) parameterizations. The reduction in the wind biases is due to enhanced wave drag in the winter extratropical stratosphere, which is caused directly by the additional GWDC and indirectly by the increased existing nonorographic GWD and resolved wave drag in response to the GWDC. The cold temperature biases are alleviated by increased downwelling in the winter polar stratosphere, which stems from an increased poleward motion due to enhanced wave drag in the winter extratropical stratosphere. A comparison between two simulations separately using the ray-based and columnar GWDC parameterizations shows that the polar night jet with a ray-based GWDC parameterization is much more realistic than that with a columnar GWDC parameterization.


2015 ◽  
Vol 28 (23) ◽  
pp. 9298-9312 ◽  
Author(s):  
Kevin M. Grise ◽  
Lorenzo M. Polvani ◽  
John T. Fasullo

Abstract Recent efforts to narrow the spread in equilibrium climate sensitivity (ECS) across global climate models have focused on identifying observationally based constraints, which are rooted in empirical correlations between ECS and biases in the models’ present-day climate. This study reexamines one such constraint identified from CMIP3 models: the linkage between ECS and net top-of-the-atmosphere radiation biases in the Southern Hemisphere (SH). As previously documented, the intermodel spread in the ECS of CMIP3 models is linked to present-day cloud and net radiation biases over the midlatitude Southern Ocean, where higher cloud fraction in the present-day climate is associated with larger values of ECS. However, in this study, no physical explanation is found to support this relationship. Furthermore, it is shown here that this relationship disappears in CMIP5 models and is unique to a subset of CMIP models characterized by unrealistically bright present-day clouds in the SH subtropics. In view of this evidence, Southern Ocean cloud and net radiation biases appear inappropriate for providing observationally based constraints on ECS. Instead of the Southern Ocean, this study points to the stratocumulus-to-cumulus transition regions of the SH subtropical oceans as key to explaining the intermodel spread in the ECS of both CMIP3 and CMIP5 models. In these regions, ECS is linked to present-day cloud and net radiation biases with a plausible physical mechanism: models with brighter subtropical clouds in the present-day climate show greater ECS because 1) subtropical clouds dissipate with increasing CO2 concentrations in many models and 2) the dissipation of brighter clouds contributes to greater solar warming of the surface.


Sign in / Sign up

Export Citation Format

Share Document