The hemispheric asymmetry of ionospheric lunitidal signatures during Sudden Stratospheric Warmings in the eastern Asian and American sectors

Author(s):  
Jing Liu ◽  
Donghe Zhang ◽  
Larisa Goncharenko ◽  
Shun-Rong Zhang ◽  
Maosheng He ◽  
...  

<p>During Sudden Stratospheric Warming events, the ionosphere exhibits phase-shifted semi-diurnal perturbations, which are typically attributed to vertical coupling associated with the semi-diurnal lunar tide (M2). Our understanding of ionospheric responses to M2 is limited. This study focuses on fundamental vertical coupling processes associated with the latitudinal extent and hemispheric asymmetry of ionospheric M2 signatures, using total electron content data from the eastern Asian and American sectors. Our results illustrate that the asymmetry maximizes at around 15°N and 20°S magnetic latitudes. In the southern hemisphere, the M2-like signatures extend deep into midlatitude and, in the American sector, encounter the Weddell Sea Anomaly. The M2 amplitude is larger in the northern hemisphere and such asymmetry is more distinct in the eastern Asian sector. The hemispheric asymmetry of M2 signatures in the low latitude can be primarily explained by the trans-equatorial wind modulation of the equatorial plasma fountain. Other physical processes could also be relevant, including hemispheric asymmetry of the M2 below the F region, the ambient thermospheric composition and ionospheric plasma distribution, and the geomagnetic field configuration.</p>

2020 ◽  
Author(s):  
Tsung-Che Tsai ◽  
Hau-Kun Jhuang ◽  
Lou-Chuang Lee ◽  
Yi-Ying Ho

<p>The total electron content (TEC) data from Global Ionosphere Maps provide a global TEC map in the region between latitude 87.5°S to 87.5°N, and longitude 180°W to 180°E. The TEC data in geographic coordinates are first transformed into geomagnetic coordinates through Altitude-Adjusted Corrected Geomagnetic Model (AACGM). We then use 2-dimensional (longitudinal, 180°W-180°E and time, 10 days) Fourier transform (FT) of TEC variations along different geomagnetic latitude to obtain all wave modes in both UT (universal time) and LT (local time) frames for the period from November 18, 2002 to October 15, 2014. The summation of contributing wave modes at a given local time provides the longitudinal variation of the associated zonal waves. The phases of wave modes lead to a constructive or destructive interference of contributing zonal wave, which gives different structures at different local time. These local time structures include Weddell Sea Anomaly (WSA), Southern Atlantic Anomaly (SAA), and Four-peaked structure. The dependence of the peaked structures on latitudinal, seasonal, and solar activity is studied.</p>


2021 ◽  
Author(s):  
Nicholas Ssessanga ◽  
Mamoru Yamamoto ◽  
Susumu Saito

Abstract This paper demonstrates and assesses the capability of the advanced three- dimensional (3-D) ionosphere tomography technique, during severe conditions. The study area is northeast Asia and quasi-Japan-centred. Reconstructions are based on Total electron content data from a dense ground-based global navigation satellite system receiver network and parameters from operational ionosondes. We used observations from ionosondes, Swarm satellites and radio occultation (RO) to assess the 3-D picture. Specifically, we focus on St. Patrick’s day solar storm (17–19 March 2015), the most intense in solar cycle 24. During this event, the energy ingested into the ionosphere resulted in Dst and Kp and reaching values ~-223 nT and 8, respectively, and the region of interest, the East Asian sector, was characterized by a ~ 60% reduction in electron densities. Results show that the reconstructed densities follow the physical dynamics previously discussed in earlier publications about storm events. Moreover, even when ionosonde data were not available, the technique could still provide a consistent picture of the ionosphere vertical structure. Furthermore, analyses show that there is a profound agreement between the RO profiles/in-situ densities and the reconstructions. Therefore, the technique is a potential candidate for applications that are sensitive to ionospheric corrections.


Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2010 ◽  
Vol 10 (5) ◽  
pp. 1061-1067 ◽  
Author(s):  
M. Akhoondzadeh ◽  
M. Parrot ◽  
M. R. Saradjian

Abstract. In Samoa Islands, a powerful earthquake took place at 17:48:10.99 UTC (06:48:10.99 LT) on 29 September 2009 with a magnitude Mw=8.1. Using ICE (Instrument Champ Electrique) and IMSC (Instrument Magnetic Search Coil) experiments onboard the DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite we have surveyed possible variations in electromagnetic signals transmitted by the ground-based VLF transmitter NPM in Hawaii and in HF plasma waves close to the Samoa earthquake during the seismic activity. The indices Dst and Kp were used to distinguish pre-earthquake anomalies from the other anomalies related to the geomagnetic activities. In a previous study we have shown that anomalies in IAP (plasma analyzer) and ISL (Langmuir probe) experiments onboard the DEMETER and also TEC (Total Electron Content) data appear 1 to 5 days before the Samoa earthquake. In this paper we show that the anomalies in the VLF transmitter signal and in the HF range appear with the same time scale. The lack of significant geomagnetic activities indicates that these anomalous behaviors could be regarded as seismo-ionospheric precursors. It is also shown that comparative analysis is more effective in seismo-ionospheric studies.


2013 ◽  
Vol 31 (9) ◽  
pp. 1549-1558 ◽  
Author(s):  
S. Kumar ◽  
A. K. Singh ◽  
R. P. Singh

Abstract. The variability of ionospheric response to the total solar eclipse of 22 July 2009 has been studied analyzing the GPS data recorded at the four Indian low-latitude stations Varanasi (100% obscuration), Kanpur (95% obscuration), Hyderabad (84% obscuration) and Bangalore (72% obscuration). The retrieved ionospheric vertical total electron content (VTEC) shows a significant reduction (reflected by all PRNs (satellites) at all stations) with a maximum of 48% at Varanasi (PRN 14), which decreases to 30% at Bangalore (PRN 14). Data from PRN 31 show a maximum of 54% at Kanpur and 26% at Hyderabad. The maximum decrement in VTEC occurs some time (2–15 min) after the maximum obscuration. The reduction in VTEC compared to the quiet mean VTEC depends on latitude as well as longitude, which also depends on the location of the satellite with respect to the solar eclipse path. The amount of reduction in VTEC decreases as the present obscuration decreases, which is directly related to the electron production by the photoionization process. The analysis of electron density height profile derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere & Climate) satellite over the Indian region shows significant reduction from 100 km altitude up to 800 km altitude with a maximum of 48% at 360 km altitude. The oscillatory nature in total electron content data at all stations is observed with different wave periods lying between 40 and 120 min, which are attributed to gravity wave effects generated in the lower atmosphere during the total solar eclipse.


Sign in / Sign up

Export Citation Format

Share Document