High performance modular, compact and ruggedized processing system for airborne and balloon remote sensing instruments

Author(s):  
Tom Neubert ◽  
Georg Schardt ◽  
Heinz Rongen ◽  
Egon Zimmermann ◽  
Thomas Gulde ◽  
...  

<p>Observations from aircraft and balloons with remote sensing instruments are an important method to investigate processes within the Earth environment. These applications require powerful computing systems that must be developed or adapted for the measurement task and requirements. In particular, imaging spectrometers generate high data rates by almost 10,000 pixels at about 4,000 frames per second. Accordingly, high performance is needed to provide operational control and data processing with high data bandwidth and the capability to store this data also during long duration flights.</p><p>A modular processing system architecture based on modified industrial grade board components has been developed to meet these high requirements for processing power and storage capacity. The major advantages of this approach are flexibility, (re)programmability, modularity and module re-use in order to attain lower development time and costs. However, it is a challenge to design this processing system to be suitable for the harsh environments of aircraft or balloon applications in terms of temperature range, humidity and vibration.</p><p>With an efficient approach ruggedized characteristics are achieved using a conduction cooled design in combination with components based on VPX standard and customized backplane transition modules in order to reduce operational risk with necessary measures of mitigation techniques. This approach results in a processing system that combines hardware and software redundancies to assure system availability and reliability for long duration flights.</p><p>In this presentation the compact flight proven system design is presented that has been used in recent years for high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard the HALO and Geophysica high-altitude aircrafts. Various system configurations and performance results will be shown, which have been achieved in the current design and will be applied in future balloon campaigns.</p>

Author(s):  
Yassine Sabri ◽  
Aouad Siham

Multi-area and multi-faceted remote sensing (SAR) datasets are widely used due to the increasing demand for accurate and up-to-date information on resources and the environment for regional and global monitoring. In general, the processing of RS data involves a complex multi-step processing sequence that includes several independent processing steps depending on the type of RS application. The processing of RS data for regional disaster and environmental monitoring is recognized as computationally and data demanding.Recently, by combining cloud computing and HPC technology, we propose a method to efficiently solve these problems by searching for a large-scale RS data processing system suitable for various applications. Real-time on-demand service. The ubiquitous, elastic, and high-level transparency of the cloud computing model makes it possible to run massive RS data management and data processing monitoring dynamic environments in any cloud. via the web interface. Hilbert-based data indexing methods are used to optimally query and access RS images, RS data products, and intermediate data. The core of the cloud service provides a parallel file system of large RS data and an interface for accessing RS data from time to time to improve localization of the data. It collects data and optimizes I/O performance. Our experimental analysis demonstrated the effectiveness of our method platform.


Author(s):  
Maksim V. ERESHKO ◽  
Andrey V. BORISOV

The paper addresses the problem of cooperative development of ground space infrastructure and orbital constellation of Earth remote sensing spacecraft (ERS). In view of the considerable number of elements in space and ground segments of a heterogenous space ERS system, a mechanism is required for developing its concepts involving acquiring updated inputs for determining measures to optimize the ERS ground segment configuration geography-wise and outfit receiving systems for receiving the mission payload data from high-performance ERS spacecraft. The paper describes trends in the development of equipment and technologies for transmitting ERS mission payload data, in particular, the current status of the high data rate optical backbone network in order to determine possible locations for ERS Ground Segment elements. It introduces indicators which provide system-level characterization of the capabilities for a distributed network of data receiving stations. Based on the obtained data, system-level patterns were determined in the development of the ground segment for receiving the ERS mission payload data depending on the state of the ERS orbital constellation, driving further development of growth strategy for the ERS ground space infrastructure. Key words: Earth remote sensing, concept, mission payload data, receiving system, data reception station.


2010 ◽  
Vol 20-23 ◽  
pp. 884-888
Author(s):  
Cheng Fa Xu ◽  
Jun Ling Wang ◽  
Rong Gang Wu

In order to meet multi-channel, high data rate, intensive computing capacity of modern radar signal processing, a standard, scalable, high-performance general-purpose radar signal processing system platform is proposed. The main processor of this system platform is the DSP and FPGA. In the analysis of different kinds of radar signal processing algorithm, and taking into account the respective advantages and disadvantages of DSP and FPGA, In this paper, a software architecture method for radar signal processing is given to decide how to distribute different algorithm into DSP and FPGA. At last, for a certain type of circular array radar, an implementation of radar signal processing by using the general-purpose radar signal processing system platform is proposed.


2015 ◽  
Vol 6 (1) ◽  
pp. 121-133 ◽  
Author(s):  
V. Khachumov ◽  
◽  
V. Fralenko ◽  
Chen Guo Xiang ◽  
Zhang Guo Liang ◽  
...  

Author(s):  
M. C. Cheng ◽  
S. C. Chou ◽  
Y. C. Chen ◽  
B. Chen ◽  
C. Liu ◽  
...  

FORMOSAT-2, Taiwan’s first remote sensing satellite, was successfully launched in May of 2004 into the Sun-synchronous orbit at 891 kilometers of altitude. With the daily revisit feature, the 2-m panchromatic, 8-m multi-spectral resolution images captured have been used for researches and operations in various societal benefit areas. This paper details the orchestration of various tasks conducted in different institutions in Taiwan in the efforts responding to international disasters. The institutes involved including its space agency-National Space Organization (NSPO), Center for Satellite Remote Sensing Research of National Central University, GIS Center of Feng-Chia University, and the National Center for High-performance Computing. Since each institution has its own mandate, the coordinated tasks ranged from receiving emergency observation requests, scheduling and tasking of satellite operation, downlink to ground stations, images processing including data injection, ortho-rectification, to delivery of image products. With the lessons learned from working with international partners, the FORMOSAT Image Processing System has been extensively automated and streamlined with a goal to shorten the time between request and delivery in an efficient manner. The integrated team has developed an Application Interface to its system platform that provides functions of search in archive catalogue, request of data services, mission planning, inquiry of services status, and image download. This automated system enables timely image acquisition and substantially increases the value of data product. Example outcome of these efforts in recent response to support Sentinel Asia in Nepal Earthquake is demonstrated herein.


Author(s):  
M. C. Cheng ◽  
S. C. Chou ◽  
Y. C. Chen ◽  
B. Chen ◽  
C. Liu ◽  
...  

FORMOSAT-2, Taiwan’s first remote sensing satellite, was successfully launched in May of 2004 into the Sun-synchronous orbit at 891 kilometers of altitude. With the daily revisit feature, the 2-m panchromatic, 8-m multi-spectral resolution images captured have been used for researches and operations in various societal benefit areas. This paper details the orchestration of various tasks conducted in different institutions in Taiwan in the efforts responding to international disasters. The institutes involved including its space agency-National Space Organization (NSPO), Center for Satellite Remote Sensing Research of National Central University, GIS Center of Feng-Chia University, and the National Center for High-performance Computing. Since each institution has its own mandate, the coordinated tasks ranged from receiving emergency observation requests, scheduling and tasking of satellite operation, downlink to ground stations, images processing including data injection, ortho-rectification, to delivery of image products. With the lessons learned from working with international partners, the FORMOSAT Image Processing System has been extensively automated and streamlined with a goal to shorten the time between request and delivery in an efficient manner. The integrated team has developed an Application Interface to its system platform that provides functions of search in archive catalogue, request of data services, mission planning, inquiry of services status, and image download. This automated system enables timely image acquisition and substantially increases the value of data product. Example outcome of these efforts in recent response to support Sentinel Asia in Nepal Earthquake is demonstrated herein.


2011 ◽  
Vol 672 ◽  
pp. 3-11 ◽  
Author(s):  
José M. Torralba ◽  
Raquel De Oro ◽  
Mónica Campos

Since low alloyed sintered steels were introduced in the market of the structural parts, we have followed the evolution of a material with poor mechanical properties and any uniformity (in the sense of reproducibility) to materials that today are produced with high reliability and performance. The working efficiency could be equivalent in many cases with the best wrought steel, and maintaining a good margin in terms of cost and competitively. In this paper a complete review of the topic is accomplished, from the early times when the first parts were made by plain iron or iron-carbon, going through the different alloying systems: Fe-Cu, Fe-P, Fe-Cu-Ni-Mo, and more recently Fe-Cr-Mo and Fe-Mn. The development in processing routes has been considered too. The main milestones in the field of new alloying systems have been: 1) the introduction of Cu in 60-70’s, 2) the new complex systems with Cu-Ni-Mo in the 80’s and 3) the introduction of alloying elements with high oxygen affinity (in the late 90’s). Regarding the milestones in processing could be considered: 1) the development of new mixing procedures, 2) the warm compaction and high velocity compaction, 3) the improvements in sintering control and high temperature sintering. Several decades of research and innovation, acting on the processing system (mixing, pressing, sintering, post-sintering operations,…) and on the alloying system (from the earliest times with plain iron to complex systems used today), has allowed us to have a highly competitive materials, in terms of performance, and processes in terms of cost. The future is still open to new developments.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Sign in / Sign up

Export Citation Format

Share Document