Predicting Convective Storm Characteristics using Machine Learning from Hi-Resolution NWP Forecasts

Author(s):  
Aniel Jardines

<p>Convective weather represents a significant disruption to air traffic flow management (ATFM) operations. Thunderstorms are the cause for a substantial amount of delay in both the en-route and airport environment. Before the day of operations, poor prediction capability of convective weather prohibits traffic managers from considering weather mitigation strategies during the pre-tactical phase of ATFM planning. As a result, convective weather is mitigated tactically, possibly leading to excessive delays.  </p><p>The skill of weather forecasting has greatly improved in recent years. Hi-resolution weather models can predict the future state of the atmosphere for some weather parameters. However, incorporating the output from these sophisticated weather products into an ATFM solution that provides easily interpreted information by the air traffic managers remains a challenge. </p><p>This paper combines data from high-resolution numerical weather predictions with actual storm observations from lightning detecting and satellite images. It applies supervised machine learning techniques such as binary classification, multiclass classification, and regression to train neural networks to predict the occurrence, severity, and altitude of thunderstorms. The model predictions are given up to 36hr in advance, within timeframes necessary for pre-tactical planning of ATFM, providing traffic managers with valuable information for developing weather mitigation plans. </p>

Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
Kanadpriya Basu ◽  
Treena Basu ◽  
Ron Buckmire ◽  
Nishu Lal

Every year, academic institutions invest considerable effort and substantial resources to influence, predict and understand the decision-making choices of applicants who have been offered admission. In this study, we applied several supervised machine learning techniques to four years of data on 11,001 students, each with 35 associated features, admitted to a small liberal arts college in California to predict student college commitment decisions. By treating the question of whether a student offered admission will accept it as a binary classification problem, we implemented a number of different classifiers and then evaluated the performance of these algorithms using the metrics of accuracy, precision, recall, F-measure and area under the receiver operator curve. The results from this study indicate that the logistic regression classifier performed best in modeling the student college commitment decision problem, i.e., predicting whether a student will accept an admission offer, with an AUC score of 79.6%. The significance of this research is that it demonstrates that many institutions could use machine learning algorithms to improve the accuracy of their estimates of entering class sizes, thus allowing more optimal allocation of resources and better control over net tuition revenue.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


Sign in / Sign up

Export Citation Format

Share Document