scholarly journals Predictive Modelling of Employee Turnover in Indian IT Industry Using Machine Learning Techniques

2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012013
Author(s):  
Chiradeep Gupta ◽  
Athina Saha ◽  
N V Subba Reddy ◽  
U Dinesh Acharya

Abstract Diagnosis of cardiac disease requires being more accurate, precise, and reliable. The number of death cases due to cardiac attacks is increasing exponentially day by day. Thus, practical approaches for earlier diagnosis of cardiac or heart disease are done to achieve prompt management of the disease. Various supervised machine learning techniques like K-Nearest Neighbour, Decision Tree, Logistic Regression, Naïve Bayes, and Support Vector Machine (SVM) model are used for predicting cardiac disease using a dataset that was collected from the repository of the University of California, Irvine (UCI). The results depict that Logistic Regression was better than all other supervised classifiers in terms of the performance metrics. The model is also less risky since the number of false negatives is low as compared to other models as per the confusion matrix of all the models. In addition, ensemble techniques can be approached for the accuracy improvement of the classifier. Jupyter notebook is the best tool, for the implementation of Python Programming having many types of libraries, header files, for accurate and precise work.


2012 ◽  
Vol 9 (73) ◽  
pp. 1934-1942 ◽  
Author(s):  
Philip J. Hepworth ◽  
Alexey V. Nefedov ◽  
Ilya B. Muchnik ◽  
Kenton L. Morgan

Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


2020 ◽  
Author(s):  
Castro Mayleen Dorcas Bondoc ◽  
Tumibay Gilbert Malawit

Today many schools, universities and institutions recognize the necessity and importance of using Learning Management Systems (LMS) as part of their educational services. This research work has applied LMS in the teaching and learning process of Bulacan State University (BulSU) Graduate School (GS) Program that enhances the face-to-face instruction with online components. The researchers uses an LMS that provides educators a platform that can motivate and engage students to new educational environment through manage online classes. The LMS allows educators to distribute information, manage learning materials, assignments, quizzes, and communications. Aside from the basic functions of the LMS, the researchers uses Machine Learning (ML) Algorithms applying Support Vector Machine (SVM) that will classify and identify the best related videos per topic. SVM is a supervised machine learning algorithm that analyzes data for classification and regression analysis by Maity [1]. The results of this study showed that integration of video tutorials in LMS can significantly contribute knowledge and skills in the learning process of the students.


Optimization algorithms are widely used for the identification of intrusion. This is attributable to the increasing number of audit data features and the decreasing performance of human-based smart Intrusion Detection Systems (IDS) regarding classification accuracy and training time. In this paper, an improved method for intrusion detection for binary classification was presented and discussed in detail. The proposed method combined the New Teaching-Learning-Based Optimization Algorithm (NTLBO), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and Logistic Regression (LR) (feature selection and weighting) NTLBO algorithm with supervised machine learning techniques for Feature Subset Selection (FSS). The process of selecting the least number of features without any effect on the result accuracy in FSS was considered a multi-objective optimization problem. The NTLBO was proposed in this paper as an FSS mechanism; its algorithm-specific, parameter-less concept (which requires no parameter tuning during an optimization) was explored. The experiments were performed on the prominent intrusion machine-learning datasets (KDDCUP’99 and CICIDS 2017), where significant enhancements were observed with the suggested NTLBO algorithm as compared to the classical Teaching-Learning-Based Optimization algorithm (TLBO), NTLBO presented better results than TLBO and many existing works. The results showed that NTLBO reached 100% accuracy for KDDCUP’99 dataset and 97% for CICIDS dataset


2020 ◽  
pp. 1314-1330 ◽  
Author(s):  
Mohamed Elhadi Rahmani ◽  
Abdelmalek Amine ◽  
Reda Mohamed Hamou

Botanists study in general the characteristics of leaves to give to each plant a scientific name; such as shape, margin...etc. This paper proposes a comparison of supervised plant identification using different approaches. The identification is done according to three different features extracted from images of leaves: a fine-scale margin feature histogram, a Centroid Contour Distance Curve shape signature and an interior texture feature histogram. First represent each leaf by one feature at a time in, then represent leaves by two features, and each leaf was represented by the three features. After that, the authors classified the obtained vectors using different supervised machine learning techniques; the used techniques are Decision tree, Naïve Bayes, K-nearest neighbour, and neural network. Finally, they evaluated the classification using cross validation. The main goal of this work is studying the influence of representation of leaves' images on the identification of plants, and also studying the use of supervised machine learning algorithm for plant leaves classification.


Author(s):  
A. B.M. Shawkat Ali

From the beginning, machine learning methodology, which is the origin of artificial intelligence, has been rapidly spreading in the different research communities with successful outcomes. This chapter aims to introduce for system analysers and designers a comparatively new statistical supervised machine learning algorithm called support vector machine (SVM). We explain two useful areas of SVM, that is, classification and regression, with basic mathematical formulation and simple demonstration to make easy the understanding of SVM. Prospects and challenges of future research in this emerging area are also described. Future research of SVM will provide improved and quality access to the users. Therefore, developing an automated SVM system with state-of-the-art technologies is of paramount importance, and hence, this chapter will link up an important step in the system analysis and design perspective to this evolving research arena.


Sign in / Sign up

Export Citation Format

Share Document