In situ Raman spectroscopic technique for high-pressure studies of mineral and fluid inclusions formation 

Author(s):  
Nadezda Chertkova ◽  
Anna Spivak ◽  
Egor Zakharchenko ◽  
Yuriy Litvin ◽  
Oleg Safonov ◽  
...  

<p>Rapid development of <em>in situ</em> experimental techniques provides researchers with new opportunities to model geological processes, which take place deep in the Earth’s interior. Raman spectroscopy is considered a powerful analytical tool for investigation of the samples subjected to high pressures in a diamond anvil cell, since in such experiments phase assemblages can be determined in real time using measured Raman spectra.</p><p>In this study, we describe experimental methods for <em>in situ</em> observation and spectroscopic analysis of fluids and minerals, which constitute environment for diamond growth, at the upper mantle pressure conditions. Experiments were conducted in the externally heated, “piston-cylinder” type diamond anvil cell at pressures exceeding 6 GPa and temperatures up to 600 degree C. Phase relationships and fluid speciation were monitored during experiments to reconstruct the environment and mechanism of inclusions formation. Compared to other analytical tools, commonly used in combination with diamond anvil cell apparatus, Raman spectroscopy offers several advantages, such as short sample preparation time, non-destructive characterization of the phases observed in the sample chamber and relatively short measurement time.</p><p>This work was supported by grant No. 20-77-00079 from the Russian Science Foundation.</p>

RSC Advances ◽  
2014 ◽  
Vol 4 (30) ◽  
pp. 15534-15541 ◽  
Author(s):  
Tingting Yan ◽  
Kai Wang ◽  
Defang Duan ◽  
Xiao Tan ◽  
Bingbing Liu ◽  
...  

The effect of high pressure on two forms (α, β) of p-aminobenzoic acids (PABA) is studied in a diamond anvil cell using in situ Raman spectroscopy.


1973 ◽  
Vol 27 (5) ◽  
pp. 377-381 ◽  
Author(s):  
D. M. Adams ◽  
S. J. Payne ◽  
K. Martin

A new design of diamond anvil high pressure cell suitable for use in infrared and Raman spectroscopy is described. Its performance is demonstrated with particular reference to the pressure dependence of the infrared spectrum of K2PtCl6 and the Raman spectrum of W(CO)6. In contrast to earlier reports, in which forward scattering geometry was used, this design of cell is shown to be very suitable for Raman use in the 180° excitation mode. However, severe limitations are imposed by the fluorescence emission of diamond and of sapphire. Conditions under which the cell can be used for Raman work are summarized. New fluorescence and Raman features are reported for diamond. In particular, a band at 1730 cm−1 is characteristic of type I stones and may be due to C to N bond stretching at defect centers.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 289 ◽  
Author(s):  
Barbara Lavina ◽  
Robert Downs ◽  
Stanislav Sinogeikin

We conducted an in situ crystal structure analysis of ferroselite at non-ambient conditions. The aim is to provide a solid ground to further the understanding of the properties of this material in a broad range of conditions. Ferroselite, marcasite-type FeSe2, was studied under high pressures up to 46 GPa and low temperatures, down to 50 K using single-crystal microdiffraction techniques. High pressures and low temperatures were generated using a diamond anvil cell and a cryostat respectively. We found no evidences of structural instability in the explored P-T space. The deformation of the orthorhombic lattice is slightly anisotropic. As expected, the compressibility of the Se-Se dumbbell, the longer bond in the structure, is larger than that of the Fe-Se bonds. There are two octahedral Fe-Se bonds, the short bond, with multiplicity two, is slightly more compressible than the long bond, with multiplicity four; as a consequence the octahedral tetragonal compression slightly increases under pressure. We also achieved a robust structural analysis of ferroselite at low temperature in the diamond anvil cell. Structural changes upon temperature decrease are small but qualitatively similar to those produced by pressure.


Author(s):  
Boris A. Zakharov ◽  
Zoltan Gal ◽  
Dyanne Cruickshank ◽  
Elena V. Boldyreva

The quality of structural models for 1,2,4,5-tetrabromobenzene (TBB), C6H2Br4, based on data collected from a single crystal in a diamond anvil cell at 0.4 GPa in situ using two different diffractometers belonging to different generations have been compared, together with the effects of applying different data-processing strategies.


2020 ◽  
Vol 91 (9) ◽  
pp. 093703
Author(s):  
Kenji Ohta ◽  
Tatsuya Wakamatsu ◽  
Manabu Kodama ◽  
Katsuyuki Kawamura ◽  
Shuichiro Hirai

2011 ◽  
Author(s):  
Y. A. Sorb ◽  
N. Subramanian ◽  
T. R. Ravindran ◽  
P. Ch. Sahu ◽  
Alka B. Garg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document