The Fluorescence of Diamond and Raman Spectroscopy at High Pressures Using a New Design of Diamond Anvil Cell

1973 ◽  
Vol 27 (5) ◽  
pp. 377-381 ◽  
Author(s):  
D. M. Adams ◽  
S. J. Payne ◽  
K. Martin

A new design of diamond anvil high pressure cell suitable for use in infrared and Raman spectroscopy is described. Its performance is demonstrated with particular reference to the pressure dependence of the infrared spectrum of K2PtCl6 and the Raman spectrum of W(CO)6. In contrast to earlier reports, in which forward scattering geometry was used, this design of cell is shown to be very suitable for Raman use in the 180° excitation mode. However, severe limitations are imposed by the fluorescence emission of diamond and of sapphire. Conditions under which the cell can be used for Raman work are summarized. New fluorescence and Raman features are reported for diamond. In particular, a band at 1730 cm−1 is characteristic of type I stones and may be due to C to N bond stretching at defect centers.

2021 ◽  
Author(s):  
Nadezda Chertkova ◽  
Anna Spivak ◽  
Egor Zakharchenko ◽  
Yuriy Litvin ◽  
Oleg Safonov ◽  
...  

<p>Rapid development of <em>in situ</em> experimental techniques provides researchers with new opportunities to model geological processes, which take place deep in the Earth’s interior. Raman spectroscopy is considered a powerful analytical tool for investigation of the samples subjected to high pressures in a diamond anvil cell, since in such experiments phase assemblages can be determined in real time using measured Raman spectra.</p><p>In this study, we describe experimental methods for <em>in situ</em> observation and spectroscopic analysis of fluids and minerals, which constitute environment for diamond growth, at the upper mantle pressure conditions. Experiments were conducted in the externally heated, “piston-cylinder” type diamond anvil cell at pressures exceeding 6 GPa and temperatures up to 600 degree C. Phase relationships and fluid speciation were monitored during experiments to reconstruct the environment and mechanism of inclusions formation. Compared to other analytical tools, commonly used in combination with diamond anvil cell apparatus, Raman spectroscopy offers several advantages, such as short sample preparation time, non-destructive characterization of the phases observed in the sample chamber and relatively short measurement time.</p><p>This work was supported by grant No. 20-77-00079 from the Russian Science Foundation.</p>


RSC Advances ◽  
2014 ◽  
Vol 4 (30) ◽  
pp. 15534-15541 ◽  
Author(s):  
Tingting Yan ◽  
Kai Wang ◽  
Defang Duan ◽  
Xiao Tan ◽  
Bingbing Liu ◽  
...  

The effect of high pressure on two forms (α, β) of p-aminobenzoic acids (PABA) is studied in a diamond anvil cell using in situ Raman spectroscopy.


1983 ◽  
Vol 37 (3) ◽  
pp. 284-286 ◽  
Author(s):  
P. T. T. Wong ◽  
D. D. Klug

Types Ia, IIa, and IIb diamonds have been compared for their use as anvils in infrared and Raman high-pressure spectroscopy. In the mid-infrared region above 2700 cm−1, type Ia diamonds have better transmission than type IIa diamonds. In the far-infrared region between 600 and 300 cm−1 type IIa diamonds have in general better transmission than type Ia but at lower frequencies the transmissions are comparable. Type IIa diamond anvils, which have been tested for their use in Raman spectroscopy throughout the whole vibrational region and showed large fluorescence in this region when 514.5 nm laser excitation was used, yielded in general extremely low fluorescence with 363.8 nm excitation thus making them ideal for Raman spectroscopy with ultraviolet lasers.


2007 ◽  
Vol 85 (10) ◽  
pp. 866-872 ◽  
Author(s):  
Muhieddine Safa ◽  
Zhaohui Dong ◽  
Yang Song ◽  
Yining Huang

Pressure-induced structural changes in di-iron nonacarbonyl [Fe2(CO)9] were examined by in situ Raman spectroscopy with the aid of a diamond anvil cell. Our results indicate that Fe2(CO)9 undergoes a pressure-induced phase transformation at about 0.9 GPa. Upon further compression, another structural transformation is identified at 7 GPa. In the low-pressure phase below 0.9 GPa, the π back-bonding between metal and carbonyl increases with increasing pressure. In the high-pressure phase above 7 GPa, the combination of high-pressure and laser irradiation induces a change in structure from Fe2(CO)9 to Fe2(CO)8. Fe2(CO)8 appears to adopt a structure with C2v rather than D3d or D2h symmetry. The metal–metal bond is gradually weakened under high pressures, and Fe2(CO)8 eventually decomposes by breaking the Fe–Fe bond when compressed up to 17.7 GPa.Key words: metal carbonyl, Raman spectroscopy, high pressure, diamond anvil cell.


2019 ◽  
Vol 116 (39) ◽  
pp. 19324-19329 ◽  
Author(s):  
Rajkrishna Dutta ◽  
Eran Greenberg ◽  
Vitali B. Prakapenka ◽  
Thomas S. Duffy

Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


2014 ◽  
Vol 2014 (0) ◽  
pp. _J0420306--_J0420306-
Author(s):  
Shu SEKIGUCHI ◽  
Nobutomo NAKAMURA ◽  
Mari EINAGA ◽  
Katsuya SHIMIZU ◽  
Atsushi MIYAKE ◽  
...  

2018 ◽  
Vol 20 (10) ◽  
pp. 7282-7294 ◽  
Author(s):  
Matthew D. Ward ◽  
Haw-Tyng Huang ◽  
Li Zhu ◽  
Arani Biswas ◽  
Dmitry Popov ◽  
...  

The 1 : 1 acetylene–benzene cocrystal, C2H2·C6H6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document