3-D Heterogeneous Elastic Crustal Structure for Deformation Models in the Hengill Area, SW Iceland

Author(s):  
Cécile Ducrocq ◽  
Halldór Geirsson ◽  
Alex Hobé ◽  
Gylfi Páll Hersir ◽  
Thóra Árnadóttir ◽  
...  

<p>Crustal deformation in volcanic areas relates ground motions, measured by geodetic techniques, to physical (e.g. pressure or volumetric) changes of magmatic sources below the surface. These measurements contribute to studies of<!-- this is not optimal, changing it might require rewriting the entire sentence. Perhaps you want to break this sentence into two. --> ongoing processes at the source of possible unrest, and are thus key for hazard assessment in active volcanic areas around the globe. However, such assessments often rely on geodetic-based models with quite simplistic assumptions of the physical structure of the volcanic complex. Particularly, constant values of elastic parameters (e.g. Poisson’s ratio and shear moduli) are commonly used for entire active volcanic areas, thus overlooking the spatial effects of lithological properties, depth-dependant compression and temperature variations on those parameters. These simplifications may lead to inaccurate interpretation of the location, shape, and volume change of deformation sources.</p><p> </p><p>In this study we ask how the 3-D heterogeneities of the elastic crustal structure beneath the Hengill volcanic system, SW Iceland, affects models of deformation sources in the area. The Hengill area hosts two active volcanic systems (Hengill and Hrómundartindur), and two high-enthalpy geothermal power plants (Nesjavellir and Hellisheiði), which provide thermal and electrical power to Reykjavík, the capital of Iceland, only 30 km away. To retrieve information on the spatial heterogeneities in the shear moduli and Poisson’s ratio beneath the Hengill area, we first estimate the 3-D shallow density structure of the area using results from regional and local gravimetric surveys. We implement this structure, along with seismic tomographic studies of the SW Iceland, in a Finite Element Model to solve, using forward models, for the 3-D heterogeneities in the shear moduli and Poisson’s ratio beneath the Hengill area.<!-- This might be more effective if the order of these statements is changed, for example: To achieve [stated goal] we produce [FEM] using [results from geophysics]. --> Furthermore, we discuss the difference between static and kinematic elastic moduli, which is important when building deformation models from seismic tomography.<!-- My first reaction to this statement is: "How do you address this?" This could be answered directly, except if you think it detracts from the story. --> The new 3-D inferred elastic model is then used to re-estimate parameters for different sources of deformation causing uplift and subsidence in the area in the past decades. This study shows the importance of accounting for heterogeneities in the crustal elastic structure to estimate with higher accuracy the sources of deformation in volcanic areas around the world.</p>

Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


Author(s):  
Bashria A A Yousef ◽  
Ahmed A Hachicha ◽  
Ivette Rodriguez ◽  
Mohammad Ali Abdelkareem ◽  
Abrar Inyaat

Abstract Integration concept of energy resources can complement between the competing energy technologies. This manuscript presents a comprehensive review on the state-of-the-art of concentrated solar power (CSP) integration technology with various energy sources. Compared to CSP alone, integration of CSP and fossil fuel provides promising solution to solar energy intermittence, emissions and installation cost reduction, with 25% increase in electric power generation. On the other hand, integration of CSP with other sources such as geothermal and biomass can supply dispatchable power with almost zero emissions. The electricity produced via integrated CSP and photovoltaic (PV) has better power quality and less cost compared to that produced by PV alone or CSP alone, respectively. Integration of CSP and wind energy can meet peak demand, reduce power fluctuation and provide electrical power at a high capacity factor. However, the lack of reliable biomass, geothermal and wind data with the solar availability at specific locations is the main obstacle for the acceptance and further deployment of hybridization systems. The advantages and limitations of the hybrid technologies presented in this paper according to the literature are reviewed. Moreover, future directions of CSP such as production of hydrogen, solid particles receivers and the integration of supercritical carbon dioxide cycle are also discussed.


Author(s):  
Luis Ivan Ruiz Flores ◽  
J. Hugo Rodri´guez Marti´nez ◽  
Guillermo D. Taboada ◽  
Javier Pano Jimenez

Nowadays the refining sector in Mexico needs to increase the quantity and quality of produced fuels by installing new process plants for gasoline and ultra low sulphur diesel. These plants require the provision of electricity and steam, among other services to function properly, which can be supplied by the power plants currently installed in each refinery through an expansion of their generation capacity. These power plants need to increase its production of electricity and steam at levels above their installed capacity, which involves the addition of new power generating equipment (gas or steam turbo-generators) as well as the raise of the electrical loads. Currently, the Mexican Petroleum Company (PEMEX) is planning to restructure their electrical and steam systems in order to optimally supply the required services for the production of high quality fuels. In this paper the present status of the original electrical power systems of the refineries is assessed and the electrical integration of new process plants in the typical schemes is analyzed. Also this paper shows the conceptual schemes proposed to restructure the electrical power system for two refineries and the strategic planning focused on implement the modifications required for the integration of new process plants that will demand about 20 MW for each refinery by 2014. The results of the analysis allowed to identify the current conditions of the electrical power systems in the oil refining industry or National Refining Industry (NRI), and thereby to offer technical solutions that could be useful to engineers facing similar projects.


Author(s):  
Владимир Борисович Тупов ◽  
Айнур Булатович Мухаметов

Сухие вентиляторные градирни тепловых электрических станций могут быть источником превышения санитарных норм на территории станции и в окружающем районе. В статье проведен анализ уровня шума сухих вентиляторных градирен в зависимости от мощности тепловых электрических станций. Получена формула позволяющая определить изменение уровня звука сухих вентиляторных градирен в зависимости от электрической мощности тепловых электрических станций. Dry fan cooling towers of thermal power plants can be a source of exceeding sanitary standards on the territory of the plant and in the surrounding area. The article analyzes the noise level of dry fan cooling towers depending on the power of thermal power plants. A formula has been obtained that makes it possible to determine the change in the sound level of dry fan cooling towers depending on the electrical power of thermal power plants.


Author(s):  
Carlos De Marqui ◽  
Alper Erturk ◽  
Daniel J. Inman

In this paper, the use of segmented electrodes is investigated to avoid cancellation of the electrical outputs of the torsional modes in energy harvesting from piezo-elastic and piezo-aero-elastic systems. The piezo-elastic behavior of a cantilevered plate with an asymmetric tip mass under base excitation is investigated using an electromechanically coupled finite element (FE) model. Electromechanical frequency response functions (FRFs) are obtained using the coupled FE model both for the continuous and segmented electrodes configurations. When segmented electrodes are considered torsional modes also become significant in the resulting electrical FRFs, improving broadband (or varying-frequency excitation) performance of the generator plate. The FE model is also combined with an unsteady aerodynamic model to obtain the piezo-aero-elastic model. The use of segmented electrodes to improve the electrical power generation from aeroelastic vibrations of plate-like wings is investigated. Although the main goal here is to obtain the maximum electrical power output for each airflow speed (both for the continuous and segmented electrode cases), piezoelectric shunt damping effect on the aeroelastic response of the generator wing is also investigated.


Sign in / Sign up

Export Citation Format

Share Document