Climate impact on radon risk for silty loam soils 

Author(s):  
Javier Valdes-Abellan ◽  
Sara Gil-Oncina ◽  
Concepción Pla ◽  
Juan José Galiana-Merino ◽  
David Benavente

<p>Radon isotope <sup>222</sup>Rn constitutes a natural source of radioactivity, which is worldwide extended and can be found, regardless its concentration in almost all soils of the Earth surface. Inhale radon gas is a risk for human health and the World Health Organization, WHO, has concluded the doubtless correlation between long exposure to radon gas and lung cancer; even more, the US-EPA considers it as the second most important cause of lung cancer in USA., The adoption of preventive measurements during building construction is extending in many developed countries because long exposure to radon gas take place mainly in poorly ventilated basements. Generally, these measures are based on radon risk associated exclusively with radon production by soils, but less attention are devoted to the impact of soil gas permeability and, even more, of the variable soil gas permeability because of the different degrees of soil water contents. Soil water content affects soil permeability to both water and vapor phases, and it must be taken into consideration when defining the risk associated to the presence of radon. In the present study, we show the importance of different climate conditions on soil water content and in turn on the gas permeability. We tested with the radon potential risk of building sites of the Czech Republic, which combines both the radon concentration in soil and soil gas permeability (Neznal et al, 2004). According to the Köppen classification, the present study considers different climatic scenarios: Bsk, hot semiarid climate, typical from many regions in South Europe; Csa, temperate Mediterranean climate with dry hot summers and moderate winters, also common in South Europe; Cfb, oceanic humid climate with great extension in France and UK; and finally Dfb, humid continental climate with cool winters and moderate summers, typical from central Europe.</p><p>Soil water content for each scenario was simulated using HYDRUS. Average values were obtained from a 100-year temporal series.  The top most 1-m thick layer was considered as the representative for the soil water content. Results demonstrate the necessity to consider water content when defining the radon risk and their interannual variability, especially for those climates with very clear different precipitation patterns along the different seasons.</p>

Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


2003 ◽  
Vol 2 (3) ◽  
pp. 389
Author(s):  
J. M. Basinger ◽  
G. J. Kluitenberg ◽  
J. M. Ham ◽  
J. M. Frank ◽  
P. L. Barnes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document