Ocean Heat Transport’s Response to Future Climate Projections

Author(s):  
Jennifer Mecking ◽  
Sybren Drijfhout

<p>This study investigates the response of the meridional Ocean Heat Transports (OHT) to future climate projections in both CMIP5 and CMIP6 models.  Globally the OHT transport is declining/becoming more southward across all latitudes in the Northern Hemisphere, while at latitudes south of 10°S the OHT is icreasing/becoming more northward.  These changes in OHT are much stronger in CMIP6 models relative to CMIP5, especially for the rcp2.6/ssp126 scenario relative to the rcp85/ssp585 scenario.   Throughout the entire Atlantic basin the northward heat transport is reduced and can be tied to the velocity driven overturning (Atlantic Meridional Overturning Circulation (AMOC)) contribution to the OHT.  While the temperature driven changes in the Atlantic basin dampen the changes in the OHT.  In the Indo-Pacific basin the OHT transport north of the equator does not change much since the temperature and velocity driven changes balance each other.   However, south of the equator the increase in northward heat transport is caused by the overturning velocity driven changes and again dampened by temperature driven changes.  These changes in the Indo-Pacific basin can be tied to changes in wind driven subtropical overturning cells.</p>

2013 ◽  
Vol 9 (4) ◽  
pp. 1495-1504 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2013 ◽  
Vol 9 (2) ◽  
pp. 1297-1319 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in the PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2020 ◽  
Author(s):  
Zhongshi Zhang ◽  
Xiangyu Li ◽  
Chuncheng Guo ◽  
Odd Helge Otterå ◽  
Kerim H. Nisancioglu ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), coupled climate models have been used to simulate an interglacial climate during the mid-Piacenzian warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), poleward ocean heat transport and sea surface warming in the Atlantic simulated with these models. In PlioMIP2, all models simulate an intensified mid-Pliocene AMOC. However, there is no consistent response in the simulated Atlantic ocean heat transport, or the depth of the Atlantic overturning cell. The models show a large spread in the simulated AMOC maximum, the Atlantic ocean heat transport, as well as the surface warming in the North Atlantic. Although a few models simulate a surface warming of ~ 8–12 ° in the North Atlantic, similar to the reconstruction from Pliocene Research, Interpretation and Synoptic Mapping (PRISM), most models underestimate this warming. The large model-spread and model-data discrepancies in the PlioMIP2 ensemble does not support the hypothesis that an intensification of the AMOC, together with an increase in northward ocean heat transport, is the dominant forcing for the mid-Pliocene warm climate.


2020 ◽  
Author(s):  
Jennifer Mecking ◽  
Sybren Drijfhout

<p>Ocean heat and freshwater transports play an important role in today’s climate system.  The Atlantic meridional heat transport transports 1.2 PW of heat northward leading to the warm climate we experience in Europe today, while the freshwater transport due to the Atlantic Meridional Overturning Circulation (AMOC) is often used as an indicator for the stability of the AMOC.  Future climate projections show that the AMOC is expected to weaken over the next several decades.  These changes to the AMOC as well as other circulations changes will not only impact the heat and freshwater transports in the Atlantic but also the temperature and salinity structure.  Using both CMIP5 and CMIP6 data this study untangles the impacts of velocity changes versus temperature/ salinity in future climate projections on Atlantic heat and freshwater transports.  Initial results show that changes in velocity dominate heat transport changes while the changes in salinity structure play a large role in freshwater transports with the impact of velocity changes being latitude and model dependent.</p>


2012 ◽  
Vol 25 (23) ◽  
pp. 8009-8030 ◽  
Author(s):  
Martha W. Buckley ◽  
David Ferreira ◽  
Jean-Michel Campin ◽  
John Marshall ◽  
Ross Tulloch

Abstract Owing to the role of the Atlantic meridional overturning circulation (AMOC) in ocean heat transport, AMOC variability is thought to play a role in climate variability on a wide range of time scales. This paper focuses on the potential role of the AMOC in climate variability on decadal time scales. Coupled and ocean-only general circulation models run in idealized geometries are utilized to study the relationships between decadal AMOC and buoyancy variability and determine whether the AMOC plays an active role in setting sea surface temperature on decadal time scales. Decadal AMOC variability is related to changes in the buoyancy field along the western boundary according to the thermal wind relation. Buoyancy anomalies originate in the upper ocean of the subpolar gyre and travel westward as baroclinic Rossby waves. When the buoyancy anomalies strike the western boundary, they are advected southward by the deep western boundary current, leading to latitudinally coherent AMOC variability. The AMOC is observed to respond passively to decadal buoyancy anomalies: although variability of the AMOC leads to meridional ocean heat transport anomalies, these transports are not responsible for creating the buoyancy anomalies in the subpolar gyre that drive AMOC variability.


2021 ◽  
Vol 17 (1) ◽  
pp. 529-543
Author(s):  
Zhongshi Zhang ◽  
Xiangyu Li ◽  
Chuncheng Guo ◽  
Odd Helge Otterå ◽  
Kerim H. Nisancioglu ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), coupled climate models have been used to simulate an interglacial climate during the mid-Piacenzian warm period (mPWP; 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), poleward ocean heat transport and sea surface warming in the Atlantic simulated with these models. In PlioMIP2, all models simulate an intensified mid-Pliocene AMOC. However, there is no consistent response in the simulated Atlantic ocean heat transport nor in the depth of the Atlantic overturning cell. The models show a large spread in the simulated AMOC maximum, the Atlantic ocean heat transport and the surface warming in the North Atlantic. Although a few models simulate a surface warming of ∼ 8–12 ∘C in the North Atlantic, similar to the reconstruction from Pliocene Research, Interpretation and Synoptic Mapping (PRISM) version 4, most models appear to underestimate this warming. The large model spread and model–data discrepancies in the PlioMIP2 ensemble do not support the hypothesis that an intensification of the AMOC, together with an increase in northward ocean heat transport, is the dominant mechanism for the mid-Pliocene warm climate over the North Atlantic.


2013 ◽  
Vol 26 (6) ◽  
pp. 1926-1938 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu

Abstract A diagnostic indicator ΔMov is proposed in this paper to monitor the stability of the Atlantic meridional overturning circulation (AMOC). The ΔMov is a diagnostic for a basinwide salt-advection feedback and defined as the difference between the freshwater transport induced by the AMOC across the southern border of the Atlantic Ocean and the overturning liquid freshwater transport from the Arctic Ocean to the North Atlantic. As validated in the Community Climate System Model, version 3 (CCSM3), for an AMOC in the conveyor state, a positive ΔMov (freshwater convergence) in the Atlantic basin indicates a monostable AMOC and a negative ΔMov (freshwater divergence) indicates a bistable AMOC. Based on ΔMov, the authors investigate the AMOC stability in the Last Glacial Maximum (LGM) and analyze the modulation of the AMOC stability by an open/closed Bering Strait. Moreover, the authors estimate that the real AMOC is likely to be bistable in the present day, since some observations suggest a negative ΔMov (freshwater divergence) is currently in the Atlantic basin. However, this estimation is very sensitive to the choice of the observational data.


2021 ◽  
Author(s):  
Katinka Bellomo ◽  
Michela Angeloni ◽  
Susanna Corti ◽  
Jost von Hardenberg

<div> <div> <div> <p>In climate model simulations of future climate change, the Atlantic Meridional Overturning Circulation (AMOC) is projected to decline. However, the impacts of this decline, relative to other changes, remain to be identified. Here we address this problem by analyzing 30 idealized abrupt-4xCO2 climate model simulations. We find that in models with larger AMOC decline, there is a minimum warming in the North Atlantic, a southward displacement of the Inter-tropical Convergence Zone (ITCZ) and a poleward shift of the mid-latitude jet. The changes in the models with smaller AMOC decline are drastically different: there is a relatively larger warming in the North Atlantic, the precipitation response exhibits a wet-get-wetter, dry-get-drier pattern, and there are smaller displacements of the mid-latitude jet. Our study indicates that the AMOC is a major source of inter-model uncertainty, and continued observational efforts are needed to constrain the AMOC response in future climate change.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document