Cambrian-Ordovician evolution of Eastern Alps: New evidences constrain from magmatic rocks in the Schladming Complex (Austroalpine unit)

Author(s):  
Qianwen Huang ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Franz Neubauer ◽  
Sihua Yuan ◽  
...  

<p>The pre-Mesozoic basements in the Eastern Alps overprinted by the Variscan and alpine metamorphism (Neubauer and Frisch, 1993), which still remained the pre-Variscan tectonic evolution evidences. Many of these basements left away from their lithospheric roots due to large-scale tectonic activities (von Raumer et al., 2001), whereas their origin and tectonic history can be recorded by detailed geochemistry and geochronology. Here we present a study on the Schladming Complex, one part of Silvretta-Seckau nappe system in Austroalpine Unit, that located in the northern part of Alps to discuss their ages, origin, and tectonic relationship with the Proto-Tethys Ocean.</p><p>The Schladming Complex basement mainly comprises biotite-plagioclase gneiss, hornblende-gneiss, mica-schists, together with some amphibolites, orthogneisses, paragneisses, metagabbro and migmatites, which covered by sequence of metasedimentary (Slapansky and Frank, 1987). It underwent the medium- to high-grade metamorphism during the Variscan event and is overprinted by the greenschist facies metamorphism during the Alpine orogeny (Slapansky and Frank, 1987).</p><p>Granodioritic gneisses (539~538 Ma) and fine-grained amphibolite (531±2 Ma) in the basement represent a bimodal magmatism. Geochemical data show that the granodioritic gneisses belong to A<sub>2</sub>-type granite and originated from the lower crust, while the fine-grained amphibolites have an E-MORB affinity and the magma origined from the lithospheric mantle and contaminated by the arc-related materials. The data implies that the Schladming Complex formed in a back-arc rift tectonic setting in the Early Cambrian.</p><p>A medium-grained amphibolite gives an age of 495±5 Ma, exhibits ocean island basalt-like geochemical features and zircons positive εHf(t) values (+5.3~+10.9) indicating that the medium-grained amphibolite derived from a depleted mantle source. The monzonite granitic gneiss and plagioclase gneiss yields ages of 464±4 Ma for and 487±3 Ma, respectively. The monzonite granitic gneiss derived from the mixing of melts derived from pelitic and metaluminous rocks. The protolith of plagioclase gneiss is aplite, which has positive εHf(t) values of +5.9~+7.9, indicating it derived from the lower crust sources. The monzonite granitic gneiss and plagioclase gneiss exhibit S-type and I-type geochemical features, respectively. They are geochemically similar to the volcanic arc granite.</p><p>In summary, our data presents record of the Cambrian to Ordovician magmatism in the Schladming Complex, which provided new evidence of tectonic evolution history between Proto-Tethys and Gondwana. According to the data, we proposed that a series of rift developed in the northern margin of Gondwana during 540-530 Ma, the rifts continually expanded into a back-arc ocean in ~490 Ma and was closed around 460 Ma with S-type granitic magma intruded.</p><p><strong>References</strong></p><p>Neubauer, F., Frisch, W. 1993. The Austroalpine metamorphic basement east of the Tauern window.  In: Raumer, J. von & Neubauer, F. (eds.): Pre-Mesozoic Geology in the Alps. Berlin (Springer), pp. 515–536.</p><p>von Raumer, J., Stampfli, G., Borel, G., Bussy, F., 2001. Organization of pre-Variscan basement areas at the north-Gondwanan margin. International Journal of Earth Sciences 91, 35-52.</p><p>Slapansky, P., Frank, W. 1987. Structural evolution and geochronology of the northern margin of the Austroalpine in the northwestern Schladming crystalline (NE Tadstädter Tauern). In: Flügel, H. W. & Faupl, P. (eds.), Geodynamics of the Eastern Alps, pp. 244-262.</p>

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 274
Author(s):  
Zhitao Xu ◽  
Jinggui Sun ◽  
Xiaolong Liang ◽  
Zhikai Xu ◽  
Xiaolei Chu

Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these Pb–Zn polymetallic mineralization-related intrusions. Therefore, we examine the representative Erdaohezi deposit and show that these mineralization-related hypabyssal intrusions are composed of quartz porphyry and andesite porphyry with concordant zircon U–Pb ages of 160.3 ± 1.4 Ma and 133.9 ± 0.9 Ma, respectively. These intrusions are peraluminous and high-K calc-alkaline or shoshonitic with high Na2O + K2O contents, enrichment in large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), similar to continental arc intrusions. The zircon εHf(t) values range from 3.1 to 8.0, and the 176Hf/177Hf values range from 0.282780 to 0.282886, with Hf-based Mesoproterozoic TDM2 ages. No differences exist in the Pb isotope ratios among the quartz porphyry, andesite porphyry and ore body sulfide minerals. Detailed elemental and isotopic data imply that the quartz porphyry originated from a mixture of lower crust and newly underplated basaltic crust, while the andesite porphyry formed from the partial melting of Mesoproterozoic lower crust with the minor input of mantle materials. Furthermore, a magmatic–hydrothermal origin is favored for the Pb–Zn polymetallic mineralization in the Erdaohezi deposit. Integrating new and published tectonic evolution data, we suggest that the polymetallic mineralization-related magmatism in the Erdaohezi deposit occurred in a back-arc extensional environment at ~133 Ma in response to the rollback of the Paleo-Pacific Plate.


2020 ◽  
Author(s):  
Huiying He ◽  
Peter Cawood ◽  
Yuejun Wang

<p>In Southeast Asia, establishing the origin and associated tectonic setting of Late Paleozoic-Early Mesozoic igneous rocks is complicated by structural overprinting and the complex tectonic evolution of the Paleotethyan regime. Hainan Island, located at the south-eastern margin of the Paleotethys, and lacking significant tectonic overprints is a key to understand amalgamation history of the Indochina and South China blocks and to constraining the tectonic evolution of Paleotethys ocean in southeast Asia.</p><p>The Late Paleozoic-Early Mesozoic record of igneous rocks on Hainan Island includes the following. 1) ca. 350 Ma island arc andesites and ca. 330 Ma metabasites, the latter with both MORB- and arc-like geochemical affinities, positive ε<sub>Nd</sub>(t) values of +5.86 – +9.85 and rare inherited zircons with a zircon age of 1400 Ma inferred to be derived from a MORB source with the input of a slab-derived component. Together with the ~350 Ma island arc andesites, the Carboniferous tectonic environment is supposed to be a continental back-arc basin setting. 2) Late Permian gneiss granitoids (272-252 Ma) characterized by a gneissic foliation and calc-alkaline I-type geochemical affinities with negative Nb-Ta and Ti anomalies, related to metasomatized mantle wedge modified by the sediment-derived component in a continental arc setting. 3) ca. 257 Ma arc-like andesites, which further validate a subduction-related setting. 4) Peraluminious Early-Middle Triassic massive granitoids (251–243 Ma) with slightly high A/CNK ratios, δ<sup>18</sup>O values (up to 11.75 ‰) and Sr/Y ratios, inferred to have formed in a compressive regime from a mixed source of greywacke and metabasite. 5) Middle-Late Triassic (242–225 Ma) high-K calc-alkaline granitoids with high zircon temperatures (842–867°C) and geochemical signatures of A-type granites. They show slightly low whole-rock ε<sub>Nd</sub>(t) and zircon ε<sub>Hf</sub>(t) values, suggestive of the derivation from a metabasite–greywacke source in an extensional setting. 6) ca. 240 Ma gabbro-dolerites showing enrichment in LILEs, depletion in HFSEs, negative ε<sub>Nd</sub> (t)-ε<sub>Hf</sub> (t) values (−8.45 to −1.05 and −5.9 to −2.7, respectively) and crustal-like δ<sup>18</sup>O values (7.26–8.70‰), it is implied that the Hainan Island entered into post-collisional environment in response to the asthenosphere upwelling shortly after the closure of back-arc basin.</p><p>Thus, Hainan Island provides a record of Carboniferous back-arc basin opening, followed by an extended Permian–Triassic history of subduction-related consumption leading to orogenic assembly and extensional collapse between the South China and Indochina blocks. Such a tempo-spatial pattern is consistent with that along the Song Ma–Ailaoshan suture zone rather than the magmatic history of eastern South China and indicates that the Paleotethys extended west to at least Hainan Island in the Late Paleozoic-Early Mesozoic.</p>


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1111
Author(s):  
Xiaolei Chu ◽  
Jinggui Sun ◽  
Fanting Sun ◽  
Yanxiong Mei ◽  
Yang Liu ◽  
...  

The Hongshan complex, located in the southern part of the Taihang Mountains in the central part of the North China Craton, consists of syenite stocks (including fine-grained biotite aegirine syenite, medium-grained aegirine gabbro syenite, coarse-grained aegirine gabbro syenite, syenite pegmatite, and biotite syenite porphyry), with monzo-diorite and monzo-gabbro dikes. This paper presents zircon U-Pb ages and Hf isotope data and whole-rock geochemical data from the Hongshan complex. LA–ICP-MS zircon U–Pb age from the fine-grained biotite aegirine syenite, monzo-diorite, and monzo-gabbro are 129.3 ± 2.0Ma, 124.8 ± 1.3Ma, and 124.1 ± 0.9Ma, respectively, indicating their emplacement in the Early Cretaceous when the North China Craton was extensively reactivated. The monzo-diorite and monzo-gabbro have low SiO2 contents (48.94–57.75 wt%), total alkali contents (5.2–9.4 wt%), and εHf (t) values of −22.3 to −18.4 and are enriched in MgO (4.0–8.2 wt%), Al2O3 (14.3–15.8 wt%), light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Interpretation of elemental and isotopic data suggests that the magma of monzo-diorite and monzo-gabbro were derived from partial melting of the enriched lithospheric mantle metasomatized by slab-derived hydrous fluids. Syenites with high alkali (K2O + Na2O = 9.4–13.0 wt%) and Sr contents (356–1737 ppm) and low Yb contents (0.94–2.65 ppm) are enriched in Al (Al2O3 = 16.4–19.1 wt%), but depleted in MgO (0.09–2.56 w%), Cr (Avg = 7.16 ppm), Co (Avg = 6.85 ppm) and Ni (Avg = 9.79 ppm), showing the geochemical features of adakitic rocks associated with thickened lower crust. Combining zircon 176Hf/177Hf ratios of 0.282176 to 0.282359, εHf(t) values of −18.3 to −11.8 and εNd (t) values of −11.1 to −8.2, we conclude that the syenite magma was derived from the mixing of the thickened lower crust and the enriched lithospheric mantle magma. These magma processes were controlled by Paleo-Pacific plate subduction and resulted in the destruction and thinning of the central North China Craton.


2020 ◽  
Author(s):  
Jiawei Cui

<p><span>The North China (NCC) is one of the oldest cratons in the world. The tectonic evolution processes of the NCC have been debated for decades (Zhao and Zhai, 2013; Zhao, 2007; Zhao et al., 2002, 2003, 2005, 2009; Zhai et al., 2005; Zhai and Santosh, 2011; Wilde et al., 2002, 2005; Kroner et al., 2005; Kusky et al., 2001, 2007; Kusky and Li, 2003; Faure et al., 2007; Trap et al., 2012; Hu et al., 2013; Zhao et al.,2019). The controversy focuses on the time of the formation of the NCC is in the late Paleoproterozoic or the late Archean. The key point of the controversy is that there are serious disagreement about the nature and implications of the late Paleoproterozoic orogen in the NCC. Some researchers thought the NCC underwent compression in 1.85 Ga according to previous researchers (Zhai et al., 2005; Zhai and Santosh, 2011; Zhao et al., 2019). Some researchers even thought that the NCC was finally formed resulted from the collision of the east block and the west block</span><span> (Kusky et al., 2001, 2007; Kusky and Li, 2003; </span><span>Trap et al., 2012; Zhao et al., 2002a, 2003a, 2005, 2009;). Recently, we found that NE-NEE trending extensional ductile shear zones developed in the Paleoproterozoic granitic gneiss (2.4Ga) in the northern margin of the Zhongtiaoshan, the middle part of the NCC. The ductile shear zone was unconformity covered by the Changcheng System and the deformation ages according to the <sup>40</sup>Ar/<sup>39</sup>Ar dating results is 1.92 Ga, which indicate that the deformation time was in the late Paleoproterozoic. Therefore, We propose that that the NCC was in the post-collision extension environment or lateral and vertical extrusion of blocks might have happened after the orogeny</span> <span>in late Paleoproterozioc.</span></p>


Author(s):  
Flemming Mengel ◽  
Jeroen A. M. Van Gool ◽  
Eirik Krogstad And the 1997 field crew

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Mengel, F., van Gool, J. A. M., & and the 1997 field crewE. K. (1998). Archaean and Palaeoproterozoic orogenic processes: Danish Lithosphere Centre studies of the Nagssugtoqidian orogen, West Greenland. Geology of Greenland Survey Bulletin, 180, 100-110. https://doi.org/10.34194/ggub.v180.5093 _______________ The Danish Lithosphere Centre (DLC) was established in 1994 and one of its principal objectives in the first five-year funding cycle is the study of Precambrian orogenic processes. This work initially focused on the thermal and tectonic evolution of the Nagssugtoqidian orogen of West Greenland. During the first two field seasons (1994 and 1995) most efforts were concentrated in the southern and central portions of the orogen. The 1997 field season was the third and final in the project in the Nagssugtoqidian orogen and emphasis was placed on the central and northern parts of the orogen in order to complete the lithostructural study of the inner Nordre Strømfjord area and to investigate the northern margin of the orogen (NNO in Fig. 1). This report is partly a review of selected research results obtained since publication of the last Review of Greenland activities (van Gool et al. 1996), and also partly a summary of field activities in Greenland during the summer of 1997.


2020 ◽  
Vol 12 (1) ◽  
pp. 25-43
Author(s):  
Yuan Peng ◽  
Yongsheng Zhang ◽  
Eenyuan Xing ◽  
Linlin Wang

AbstractThe Zhongwunongshan Structural Belt (ZWSB) locates between the Olongbruk Microblock of North Qaidam and the South Qilian Block in China, and it has important implication for understanding the tectonic significance of North Qaidam. Nowadays, there are few discussion on the Caledonian tectonothermal events of the Zhongwunongshan Structural Belt, and there exist different opinions on provenance and tectonic environment of the Zhongwunongshan Group in the ZWSB and its adjacent North Qaidam. In this study, a comprehensive analysis of the detrital zircon geochronological research was carried out on the Zhongwunongshan Group. The detrital zircon U-Pb dating results showed two major populations. The first was Neoproterozoic (966-725 Ma) with a ∈Hf(t) = −15.9 to 9.5, and the other was late Early Paleozoic (460-434Ma) with a ∈Hf(t) = −9.6 to −3.1. In combination with previous research, the dominated provenances were found to be the Neoproterozoic granitic gneiss of the Yuqia-Shaliuhe HP-UHP metamorphic belt and the late Early Paleozoic granite of the Tanjianshan ophiolite-volcanic arc belt in North Qaidam. The Zhongwunongshan Group was deposited in the back-arc sedimentary basin related to the Caledonian collisional orogeny during Middle Silurian-Early Devonian (434-407.9 Ma).


Author(s):  
Qiong Chen ◽  
Guochun Zhao ◽  
Min Sun

Neoproterozoic to Paleozoic sedimentation shows systematic temporal-spatial variations within South China, which must be considered in reconstructing geological evolution of South China in response to global plate reorganization from the breakup of Rodinia to the assembly of Gondwana. We use >1000 new U-Pb and Hf isotopic data for detrital zircons from Neoproterozoic−Cambrian strata across the western (i.e., Longmenshan) and eastern (i.e., Wuyishan) margins of South China, coupled with compiled stratigraphic and magmatic information, to constrain change in provenance through time. First-order conclusions are as follows: (1) detrital zircons from the Neoproterozoic strata of the two margins were mainly sourced from the Panxi-Hannan arc and the Jiangnan orogen, signaling a rough self-sufficient sedimentary system; (2) newly identified Cambrian molasse-like sediments in the western margin, in which abundant detrital zircons are 550−500 Ma old with positive εHf(t) values, were mainly derived from the 580−500 Ma Cadomian arc belt along the Iran-Turkey margin; and (3) the Cambrian sediments in the eastern margin document more increased contributions from the Grenvillian-age provinces most possibly in Australia. Such spatial-temporal provenance variations signal the northward drifting of South China, from a position connecting with Iran-Turkey and northern India to that approaching Australia during the late Neoproterozoic−Cambrian period. We highlight that the activity of oblique oceanic-continental convergence accreted Asian terranes onto the northern margin of Gondwana, hence contributing to the ultimate Gondwana architecture under global plate reorganization.


Sign in / Sign up

Export Citation Format

Share Document