Tectonic control on monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field, México

Author(s):  
Martha Gabriela Gómez Vasconcelos ◽  
José Luis Macías ◽  
Denis Ramón Avellán ◽  
Giovanni Sosa-Ceballos ◽  
Víctor Hugo Garduño-Monroy

<p>Aligned volcanism is very common in many monogenetic volcanic fields around the world, which can reveal volcano-tectonic interactions at different scales. For instance, volcanic distribution discloses the tectonic stress orientation on regional scales. On more local scales, preexisting faults or fractures may control magma intrusions and their propagation through the upper crust, as faults are zones of crustal weakness that magma intrusions can intercept during its ascent, partly controlling the volcanic vent spatial distribution. But it is not quite understood how do these alignments occur; if they erupted at the same time (within a few dozens of years), if they erupted during a short time interval (hundreds of years) or during a long time interval (thousands of years); if the eruptive style and magma volumes are controlled by these faults and the regional tectonic stress regime, etc.</p><p>This study aims to understand the magmatic and structural conditions that favored the emission of a lava plateau followed by Strombolian explosions that built 13 aligned and six dispersed scoria cones through preexisting E-W– to ENE-striking faults in the Queréndaro area. Our results indicate that volcanism in the Michoacán-Guanajuato Volcanic Field occurs as intermittent magma fluxes, sometimes represented by independent volcanic vents and sometimes by clustered or aligned volcanoes. Moreover, preexisting faults exert a strong influence on volcanic spatial and temporal distribution, volcanic morphology, magma volume, and eruptive dynamics in this area.</p>

2001 ◽  
Vol 15 (21) ◽  
pp. 883-894
Author(s):  
J. SEKE ◽  
A. V. SOLDATOV ◽  
N. N. BOGOLUBOV

The dynamics of a discretized atom-field interaction model with a physically relevant form factor is analyzed. It is shown that after some short time interval only a small fraction of eigenvalues and eigenstates (belonging to the close vicinity of the excited atomic state energy E = ω0/2) contributes to the nondecay probability amplitudes in the long-time regime, whereas the contribution of all other eigenstates and eigenvalues is negligible. Nevertheless, to describe correctly the non-Markovian dynamics in the short-time regime the contribution of all eigenstates and eigenvalues must be taken into account.


2013 ◽  
Vol 10 (88) ◽  
pp. 20130630 ◽  
Author(s):  
Lucie G. Bowden ◽  
Matthew J. Simpson ◽  
Ruth E. Baker

Cell trajectory data are often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published datasets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual-based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that are most reliable when the experiment is performed in a quasi-one-dimensional geometry with a large number of identically prepared experiments conducted over a relatively short time-interval rather than a few trajectories recorded over particularly long time-intervals.


2008 ◽  
Vol 23 (6) ◽  
pp. 430-433 ◽  
Author(s):  
Richard Mahlberg ◽  
Thorsten Kienast ◽  
Tom Bschor ◽  
Mazda Adli

AbstractPatients with affective disorders have often been reported to experience subjective changes in how they perceive the flow of time. Time reproduction tasks provide information about the memory component of time perception and are thought to remain unaffected by pulse rate disturbances in the pacemaker of the internal clock.In our study, 30 patients with acute depression, 30 patients with acute mania, and 30 healthy subjects of all age groups were presented with a time reproduction task. Participants were asked to observe a stimulus presented on a computer screen for a certain length of time and, subsequently, to reproduce the stimulus for a similar length of time by pressing the space bar on the computer keyboard. Stimuli were presented to each subject for 1, 6, and 37 s.On average, the time intervals reproduced by manic patients were shorter than those reproduced by depressed patients. Manic patients reproduced the short time interval (6 s) correctly, but under-reproduced the long time interval (37 s, P < 0.001). Depressed patients correctly reproduced the long time interval, but over-reproduced the short time interval (P < 0.001).Remembering time intervals as having been longer than they actually were may lead to a slowed experience of time, as has been described in depressed patients; precisely the converse seems to apply to manic patients.


2019 ◽  
Vol 2 ◽  
pp. 1-5
Author(s):  
Mátyás Gede ◽  
Bálint Kádár

<p><strong>Abstract.</strong> The Danube, connecting ten countries with large cities, national parks and other smaller destinations is a branded as integrated destination system of Europe. This paper examines the behaviour of visitors along the river by analysing the spatio-temporal distribution of geotagged photos shared on Flickr. The authors downloaded the metadata of more than 2 million geotagged photos along the river, and created a weighed movement graph based on the short time-interval user movements. The network analysis of the graph revealed the central integrating effect of the large capital cities on the entire system. Modularity analysis indicated 18 regional tourism clusters, which are connected into three major separated destination systems which have little relation between them and the isolated clusters of Lower Danube.</p><p>This paper discusses the method of data aggregation as well as the tools used and created for visualising and analysing the data.</p>


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


1998 ◽  
Vol 1644 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Gang-Len Chang ◽  
Xianding Tao

An effective method for estimating time-varying turning fractions at signalized intersections is described. With the inclusion of approximate intersection delay, the proposed model can account for the impacts of signal setting on the dynamic distribution of intersection flows. To improve the estimation accuracy, the use of preestimated turning fractions from a relatively longer time interval has been proposed to serve as additional constraints for the same estimation but over a short time interval. The results of extensive simulation experiments indicated that the proposed method can yield sufficiently accurate as well as efficient estimation of dynamic turning fractions for signalized intersections.


2020 ◽  
pp. 5-13
Author(s):  
Vishal Dubey ◽  
◽  
◽  
◽  
Bhavya Takkar ◽  
...  

Micro-expression comes under nonverbal communication, and for a matter of fact, it appears for minute fractions of a second. One cannot control micro-expression as it tells about our actual state emotionally, even if we try to hide or conceal our genuine emotions. As we know that micro-expressions are very rapid due to which it becomes challenging for any human being to detect it with bare eyes. This subtle-expression is spontaneous, and involuntary gives the emotional response. It happens when a person wants to conceal the specific emotion, but the brain is reacting appropriately to what that person is feeling then. Due to which the person displays their true feelings very briefly and later tries to make a false emotional response. Human emotions tend to last about 0.5 - 4.0 seconds, whereas micro-expression can last less than 1/2 of a second. On comparing micro-expression with regular facial expressions, it is found that for micro-expression, it is complicated to hide responses of a particular situation. Micro-expressions cannot be controlled because of the short time interval, but with a high-speed camera, we can capture one's expressions and replay them at a slow speed. Over the last ten years, researchers from all over the globe are researching automatic micro-expression recognition in the fields of computer science, security, psychology, and many more. The objective of this paper is to provide insight regarding micro-expression analysis using 3D CNN. A lot of datasets of micro-expression have been released in the last decade, we have performed this experiment on SMIC micro-expression dataset and compared the results after applying two different activation functions.


Sign in / Sign up

Export Citation Format

Share Document