Internal tide generation due to topographically adjusted barotropic tide

Author(s):  
Christos Papoutsellis ◽  
Matthieu Mercier ◽  
Nicolas Grisouard

<p>We model internal tides generated by the interaction of a barotropic tide with variable topography. For the barotropic part, an asymptotic solution valid over the variable topography is considered. The resulting non-uniform ambient flow is used as a prescribed barotropic forcing for the baroclinic equations (linearized, non-hydrostatic, Euler equations within the Boussinesq approximation).</p><p>The internal-tide generation problem is reformulated by means of a Coupled-Mode System (CMS) based on the decomposition of the baroclinic stream function in terms of vertical basis functions that consistently satisfy the bottom boundary condition. The proposed CMS is solved numerically with a finite difference scheme and shows good convergence properties, providing efficient calculations of internal tides due to 2D topographies of arbitrary height and slope. We consider several seamounts and shelf profiles and perform calculations for a wide range of heights and slopes. Our results are compared against existing analytical estimates on the far-field energy flux in order to examine the limit of validity of common simplifications (Weak Topography Approximation, Knife edge). For subcritical cases, local extrema of the energy flux exist for different heights. Non-radiating topographies are also identified for some profiles of large enough heights. For supercritical cases, the energy flux is in general an increasing function with increasing height and criticality, and does not compare well against analytical results for very steep idealized topographies. The effect of the adjusted barotropic tide in the energy flux and the local properties of the baroclinic field is investigated through comparisons with other semi-analytical methods based on a uniform barotropic tide (Green’s function approach).  A method for estimating the sea-surface signature of internal tides is also provided.</p>

2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2020 ◽  
Vol 50 (3) ◽  
pp. 655-677 ◽  
Author(s):  
Callum J. Shakespeare

AbstractThe generation of internal waves at abyssal hills has been proposed as an important source of bottom-intensified mixing and a sink of geostrophic momentum. Using the theory of Bell, previous authors have calculated either the generation of lee waves by geostrophic flow or the generation of the internal tide by the barotropic tide, but never both together. However, the Bell theory shows that the two are interdependent: that is, the presence of a barotropic tide modifies the generation of lee waves, and the presence of a geostrophic (time mean) flow modifies the generation of the internal tide. Here we extend the theory of Bell to incorporate multiple tidal constituents. Using this extended theory, we recalculate global wave fluxes of energy and momentum using the abyssal-hill spectra, model-derived abyssal ocean stratification and geostrophic flow estimates, and the TPX08 tidal velocities for the eight major constituents. The energy flux into lee waves is suppressed by 13%–19% as a result of the inclusion of tides. The generated wave flux is dominated by the principal lunar semidiurnal tide (M2), and its harmonics and combinations, with the strongest fluxes occurring along midocean ridges. The internal tide generation is strongly asymmetric because of Doppler shifting by the geostrophic abyssal flow, with 55%–63% of the wave energy flux (and stress) directed upstream, against the geostrophic flow. As a consequence, there is a net wave stress associated with generation of the internal tide that reaches magnitudes of 0.01–0.1 N m−2 in the vicinity of midocean ridges.


2007 ◽  
Vol 37 (7) ◽  
pp. 1829-1848 ◽  
Author(s):  
Matthew H. Alford ◽  
Zhongxiang Zhao

Abstract Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong spring–neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately ±45° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW m−1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a β plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉg ≡ FE−1, is examined for both frequency bands.


2005 ◽  
Vol 35 (11) ◽  
pp. 2219-2227 ◽  
Author(s):  
Michael W. Stacey ◽  
S. Pond

Abstract A laterally integrated (two dimensional) nonlinear numerical model is used to examine the flux of M2 tidal energy in Knight Inlet. The simulated flux of tidal energy into the inlet is somewhat smaller than that estimated using the change in phase of the M2 tidal height along the inlet, a method that does not account for the effect of the internal tide on the surface elevation. The simulated energy flux into the inlet is close to the energy flux of the internal tide away from the sill determined from observations using an acoustic Doppler current profiler (ADCP). The net flux due to the internal tide is significantly less than (<1/2 of) the rate at which energy is removed from the surface tide. Earlier linear models of the internal tide produced energy fluxes that agreed with those estimated from the phase change of the tidal height but were larger than the fluxes that could be found in the observations. The reason for this discrepancy is not that these simple models neglected nonlinear effects, but rather that they did not take reflections of the internal tide into account. Also, the simulated flux of energy into the inlet less the net flux of internal tidal energy away from the sill is about equal to the simulated dissipation within 2 km on either side of the sill. The simulated net flux of internal tidal energy away from the sill is in agreement with the flux determined from the ADCP observations on the downinlet side of the sill, but not on the upinlet side of the sill. A possible explanation is that only the first internal mode (which is surface intensified) was important on the downinlet side but the first three internal modes were important on the upinlet side. The flux calculation using the ADCP observations took variations in the inlet width into account but did not take depth variations into account; thus, the reflection coefficients of the second and third modes may have been underestimated.


Ocean Science ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 441-449 ◽  
Author(s):  
T. Gerkema ◽  
H. van Haren

Abstract. Internal-tide energy fluxes are determined halfway over the southern slope of Great Meteor Seamount (Canary Basin), using data from combined CTD/LADCP yoyoing, covering the whole water column. The strongest signal is semi-diurnal and is concentrated in the upper few hundred meters of the water column. An indeterminacy in energy flux profiles is discussed; it is argued that a commonly applied condition used to determine these profiles is in fact invalid over sloping bottoms. However, the vertically integrated flux can be established unambiguously; the observed results are compared with the outcome of a numerical internal-tide generation model. For the semi-diurnal internal tide, the vertically integrated flux found in the model corresponds well to the observed one. The observed diurnal signal appears to be largely of non-tidal origin.


2017 ◽  
Vol 34 (7) ◽  
pp. 1545-1563 ◽  
Author(s):  
Guang-Zhen Jin ◽  
An-Zhou Cao ◽  
Xian-Qing Lv

AbstractTo investigate the equilibration of numerical simulation (ENS) of internal tide, a three-dimensional isopycnic coordinate internal tide model is applied to simulate the M2 internal tide on idealized topography and around the Hawaiian Ridge. An idealized experiment is carried out on a Gaussian topography, and the temporal variations of the baroclinic velocity and the baroclinic energy flux are analyzed, then ENS is studied, and two criteria are presented. Moreover, the impacts of four parameters [horizontal and vertical eddy viscosity coefficients, bottom friction coefficient, and damping coefficient (to parameterize the nonhydrostatic processes in the model)] on ENS during numerical simulations, the baroclinic velocity, the baroclinic tidal energy, and the baroclinic energy flux are investigated. It appears that ENS for the M2 internal tide is more sensitive to the horizontal eddy viscosity coefficient and the damping coefficient. To further examine the criteria of ENS, a numerical experiment is carried out to simulate the M2 internal tidal constituent near the Hawaiian Ridge. The simulated surface tide shows good agreement with results from the Oregon State University tidal model and TOPEX/Poseidon (T/P) observations. The simulation results indicate that a 50 M2 tidal period (25.88 days) run is capable of ensuring ENS for the M2 internal tide in this case. In short, this paper presents a method and two criteria for examining ENS for internal tides for modelers.


2006 ◽  
Vol 36 (6) ◽  
pp. 1104-1122 ◽  
Author(s):  
Luc Rainville ◽  
Robert Pinkel

Abstract Estimates of baroclinic energy flux are made in the immediate “Nearfield” (September–October 2002) and 450 km offshore (“Farfield”; October–November 2001) of the Kaena Ridge, an active barotropic-to-baroclinic conversion site. The flux estimates are based on repeated profiles of velocity and density obtained from the Research Platform Floating Instrument Platform (FLIP) as an aspect of the Hawaii Ocean Mixing Experiment. Energetic beams associated with both semidiurnal and diurnal internal waves are observed in the Kauai Channel. Beam depths and orientations are consistent with generation along the upper flanks of the ridge. At the far-field site, the baroclinic energy flux is borne primarily by first-mode semidiurnal waves. The energy flux associated with the entire spectrum of internal waves is computed by cross-spectral analysis. Significant energy fluxes are found in the inertial, diurnal, semidiurnal, and twice-semidiurnal frequency bands. The semidiurnal energy flux strongly dominates the spectrum at both sites. The flux magnitude follows the spring–neap cycle of the semidiurnal barotropic tide. The averaged depth-integrated mode-1 semidiurnal energy flux (over the entire water column) in the Farfield is found to be 1.7 ± 0.3 kW m−1 away from the ridge, with peak values up to 4 kW m−1. Small fluxes toward the ridge are occasionally seen at neap tide. At both sites, energy fluxes in the diurnal frequency band represent 15%–20% of the semidiurnal energy flux. In the Farfield, the magnitude of the diurnal energy flux varies in accord with the fortnightly cycle of the barotropic semidiurnal tide, rather than with the diurnal forcing, suggesting that energy for those waves is supplied by a cross-frequency transfer from the low-vertical-mode M2 internal tide to higher-mode internal waves at frequencies ½M2. In the Nearfield, the diurnal flux varies with fluctuations in both diurnal and semidiurnal forcing.


2011 ◽  
Vol 41 (9) ◽  
pp. 1772-1794 ◽  
Author(s):  
Kim I. Martini ◽  
Matthew H. Alford ◽  
Eric Kunze ◽  
Samuel M. Kelly ◽  
Jonathan D. Nash

Abstract A complex superposition of locally forced and shoaling remotely generated semidiurnal internal tides occurs on the Oregon continental slope. Presented here are observations from a zonal line of five profiling moorings deployed across the continental slope from 500 to 3000 m, a 24-h expendable current profiler (XCP) survey, and five 15–48-h lowered ADCP (LADCP)/CTD stations. The 40-day moored deployment spans three spring and two neap tides, during which the proportions of the locally and remotely forced internal tides vary. Baroclinic signals are strong throughout spring and neap tides, with 4–5-day-long bursts of strong cross-slope baroclinic semidiurnal velocity and vertical displacement . Energy fluxes exhibit complex spatial and temporal patterns throughout both tidal periods. During spring tides, local barotropic forcing is strongest and energy flux over the slope is predominantly offshore (westward). During neap tides, shoaling remotely generated internal tides dominate and energy flux is predominantly onshore (eastward). Shoaling internal tides do not exhibit a strong spring–neap cycle and are also observed during the first spring tide, indicating that they originate from multiple sources. The bulk of the remotely generated internal tide is hypothesized to be generated from south of the array (e.g., Mendocino Escarpment), because energy fluxes at the deep mooring 100 km offshore are always directed northward. However, fluxes on the slope suggest that the northbound internal tide is turned onshore, most likely by reflection from large-scale bathymetry. This is verified with a simple three-dimensional model of mode-1 internal tides propagating obliquely onto a near-critical slope, whose output conforms fairly well to observations, in spite of its simplicity.


2007 ◽  
Vol 4 (2) ◽  
pp. 371-398 ◽  
Author(s):  
T. Gerkema ◽  
H. van Haren

Abstract. Internal-tide energy fluxes are determined halfway over the southern slope of Great Meteor Seamount (Canary Basin), using data from combined CTD/LADCP yoyoing, covering the whole water column. The strongest signal is semi-diurnal and is concentrated in the upper few hundred meters of the water column. An indeterminacy in energy flux profiles is discussed; it is argued that a commonly applied condition used to uniquely determine these profiles does in fact not apply over sloping bottoms. However, the vertically integrated flux can be established unambiguously. The observed results are compared to the outcome of a numerical internal-tide generation model. For the semi-diurnal internal tide, the vertically integrated flux found in the model corresponds well to the observed one. For the diurnal tide, however, the former is much smaller; this points to non-tidal origins of the diurnal signal, which is indeed to be expected at this latitude (30°), where near-inertial and diurnal periods coincide.


Sign in / Sign up

Export Citation Format

Share Document