The innovation of the FloodHub system for a reliable flood early warning and crisis management

Author(s):  
Alexia Tsouni ◽  
Haris Kontoes ◽  
Themistocles Herekakis ◽  
Stavroula Sigourou ◽  
Theodora Perrou

<p>Flood has become the most frequent and deadliest type of disaster by far, responsible for the 43.5% of deaths in 2019. What is more, the number of flood events has extremely increased during the last decade (2000-2019), compared to the previous one (1980-1999) (CRED 2020). Therefore, policy and decision makers, more than ever, need efficient flood monitoring tools in order to facilitate their work towards increasing disaster resilience, especially in the urban and peri-urban areas, where most of the population and critical infrastructure are located. For this purpose, the FloodHub system has been developed by the Center of Earth Observation and Satellite Remote Sensing BEYOND, at the National Observatory of Athens, in the framework of the EuroGEO Disaster Resilience Action Group, supported by on-going actions (SMURBS / ERA-PLANET and Excelsior H2020 projects and the sponsor Hellenic Petroleum S.A.). The innovation of the system lies in the integration of different data sources, so as to deliver a reliable flood early warning system, and an operational awareness picture of the crisis every 5’ to the relevant authorities, namely on three levels: municipality, region, and national civil protection. FloodHub allows the near-real-time ingestion and assimilation of hydrometeorological measurements from in-situ telemetric stations, Sentinels data, and crowdsourced data, in a multi-source data fusion concept, using sophisticated hydrologic and hydraulic modelling and statistical regression techniques. It offers increased reliability through a continuous validation and optimization of results, automation in assimilating flood modeling in real time, computational efficiency, openness, flexibility, scalability, transferability, and the speed to meet rapid awareness during the crisis. Therefore, FloodHub is a useful tool in the hands of the relevant authorities and key stakeholders, contributing to an effective flood risk and crisis management. This is in line with the requirements for the implementation of the EU Floods Directive 2007/60/EC, the Sendai Framework for Disaster Risk Reduction, the UN SDGs, as well as the GEO’s Societal Benefit Areas.</p>

2021 ◽  
Author(s):  
Wen-Tsai Sung ◽  
Ihzany Vilia Devi ◽  
Sung-Jung Hsiao

Abstract According to data from the Earth's Volcano and Geological Disaster Reduction Center, a country like Indonesia has experienced many natural disasters, one of which is flooding. Floods are an annual natural disaster, especially on mountain slopes. Mountainous areas experience more dangerous than floods than the urban areas because they can cause other natural disasters, such as landslides and damage the hiking trails. The steep and winding roads minimize and limit the number of officers working in the mountains. Therefore, flood detection and monitoring equipment is needed. The proposed system based on AIoT technology provides real-time flood analysis so that the authorities can monitor residents around mountainous areas and provide early warning. This research focuses on the flood observation system as an early warning system to effectively monitor the flood-prone mountain slopes in real time while taking into account the cost, time efficiency, and safety measurement. The proposed system design includes the integration of sensors into the microcontroller, and the communication between the posts using LoRa and SIM900 sends data to the cloud server via the Internet. All sensor readings for each post are displayed on the app, and alerts are sent via SMS and the app.


2017 ◽  
Vol 68 (4) ◽  
pp. 858-863
Author(s):  
Mihaela Oprea ◽  
Marius Olteanu ◽  
Radu Teodor Ianache

Fine particulate matter with a diameter less than 2.5 �m (i.e. PM2.5) is an air pollutant of special concern for urban areas due to its potential significant negative effects on human health, especially on children and elderly people. In order to reduce these effects, new tools based on PM2.5 monitoring infrastructures tailored to specific urban regions are needed by the local and regional environmental management systems for the provision of an expert support to decision makers in air quality planning for cities and also, to inform in real time the vulnerable population when PM2.5 related air pollution episodes occur. The paper focuses on urban air pollution early warning based on PM2.5 prediction. It describes the methodology used, the prediction approach, and the experimental system developed under the ROKIDAIR project for the analysis of PM2.5 air pollution level, health impact assessment and early warning of sensitive people in the Ploiesti city. The PM2.5 concentration evolution prediction is correlated with PM2.5 air pollution and health effects analysis, and the final result is processed by the ROKIDAIR Early Warning System (EWS) and sent as a message to the affected population via email or SMS. ROKIDAIR EWS is included in the ROKIDAIR decision support system.


Author(s):  
Jun-hua Chen ◽  
Da-hu Wang ◽  
Cun-yuan Sun

Objective: This study focused on the application of wearable technology in the safety monitoring and early warning for subway construction workers. Methods: With the help of real-time video surveillance and RFID positioning which was applied in the construction has realized the real-time monitoring and early warning of on-site construction to a certain extent, but there are still some problems. Real-time video surveillance technology relies on monitoring equipment, while the location of the equipment is fixed, so it is difficult to meet the full coverage of the construction site. However, wearable technologies can solve this problem, they have outstanding performance in collecting workers’ information, especially physiological state data and positioning data. Meanwhile, wearable technology has no impact on work and is not subject to the inference of dynamic environment. Results and conclusion: The first time the system applied to subway construction was a great success. During the construction of the station, the number of occurrences of safety warnings was 43 times, but the number of occurrences of safety accidents was 0, which showed that the safety monitoring and early warning system played a significant role and worked out perfectly.


2012 ◽  
Vol 446-449 ◽  
pp. 3422-3427
Author(s):  
Wang Sheng Liu ◽  
Ming Zhao

Today there is an urgent need for effective monitoring whether for old buildings or new ones. While conventional early warning system for real-time monitoring is based on safety factor, this paper proposes a new reliability-based framework to monitor the safety of RC buildings probabilistically. The framework includes modeling resistance, predicting probability distribution of load effect, calculating reliability and setting reliability index threshold. The in-situ test data enables to update the resistance model through a Bayesian process. Meanwhile, the observed monitoring data predicts the probability distribution of load effect. FORM is used to calculate the reliability because the limit state function for real-time monitoring is linear and simple. This study shows that the reliability-based early warning system is of more scientific sense in quantifying the safety and may be applied to many engineering fields.


2018 ◽  
Vol 14 (01) ◽  
pp. 66
Author(s):  
Gan Bo ◽  
Jin Shan

In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Liu ◽  
Yunfeng Ji ◽  
Yun Gao ◽  
Zhenyu Ping ◽  
Liang Kuang ◽  
...  

Traffic accidents are easily caused by tired driving. If the fatigue state of the driver can be identified in time and a corresponding early warning can be provided, then the occurrence of traffic accidents could be avoided to a large extent. At present, the recognition of fatigue driving states is mostly based on recognition accuracy. Fatigue state is currently recognized by combining different features, such as facial expressions, electroencephalogram (EEG) signals, yawning, and the percentage of eyelid closure over the pupil over time (PERCLoS). The combination of these features increases the recognition time and lacks real-time performance. In addition, some features will increase error in the recognition result, such as yawning frequently with the onset of a cold or frequent blinking with dry eyes. On the premise of ensuring the recognition accuracy and improving the realistic feasibility and real-time recognition performance of fatigue driving states, a fast support vector machine (FSVM) algorithm based on EEGs and electrooculograms (EOGs) is proposed to recognize fatigue driving states. First, the collected EEG and EOG modal data are preprocessed. Second, multiple features are extracted from the preprocessed EEGs and EOGs. Finally, FSVM is used to classify and recognize the data features to obtain the recognition result of the fatigue state. Based on the recognition results, this paper designs a fatigue driving early warning system based on Internet of Things (IoT) technology. When the driver shows symptoms of fatigue, the system not only sends a warning signal to the driver but also informs other nearby vehicles using this system through IoT technology and manages the operation background.


2021 ◽  
Author(s):  
Kay Debby Mann ◽  
Norm Good ◽  
Farhad Fatehi ◽  
Sankalp Khanna ◽  
Victoria Campbell ◽  
...  

BACKGROUND Early warning tools identify patients at risk of deterioration in hospitals. Electronic medical records in hospitals offer real-time data, and the opportunity to automate early warning tools and provide real-time, dynamic risk estimates. OBJECTIVE This review describes published studies on the development, validation and implementation of tools for prediction of patient deterioration in hospital general wards. METHODS An electronic database search of peer-reviewed journal papers 2008-2020 identified studies reporting the use of tools and algorithms for predicting patient deterioration - defined by unplanned transfer to intensive care unit (ICU), cardiac arrest, or death. Studies conducted solely in ICUs, emergency departments or on single diagnosis patient groups were excluded. RESULTS Forty-five publications, eligible for inclusion, were heterogeneous in design, setting and outcome measures. Most papers were retrospective studies utilizing cohort data to develop, validate or statistically evaluate prediction tools. Tools consisted of early warning, screening or scoring systems based on physiologic data, as well as more complex algorithms developed to better represent real-time, deal with complexities of longitudinal data and warn of deterioration risk earlier. Only a few studies detailed the results of implementation of the deterioration warning tools. CONCLUSIONS Despite relative progress on the development of algorithms to predict patient deterioration, the literature has not shown that the deployment or implementation of such algorithms is reproducibly associated with improvement of patient outcomes. Further work is needed to realise the potential of automated predictions and updating dynamic risk estimates as part of an operational early warning system for inpatient deterioration.


Sign in / Sign up

Export Citation Format

Share Document