Virtual laser scanning (VLS) in forestry – Investigating appropriate 3D forest representations for LiDAR simulations with HELIOS++

Author(s):  
Hannah Weiser ◽  
Lukas Winiwarter ◽  
Jannika Schäfer ◽  
Fabian Ewald Fassnacht ◽  
Katharina Anders ◽  
...  

<p>Virtual laser scanning (VLS) is a valuable method to complement expensive laser scanning data acquisition in the field. VLS refers to the simulation of LiDAR to create 3D point clouds from models of scenes, platforms and sensors mimicking real world acquisitions. In forestry, this can be used to generate training and testing data with complete ground truth for algorithms performing essential tasks such as tree detection or tree species classification. Furthermore, VLS allows for the in-depth investigation of the influence of different acquisition parameters on the point clouds and thus also the behaviour of algorithms, which is important when relating point cloud metrics to forest inventory variables. Finally, VLS can be used for acquisition planning and optimisation, as different configurations can be tested regarding their ability to create data of the required quality with minimal effort. For these purposes, we developed the open source Heidelberg LiDAR Operations Simulator HELIOS++ (written in C++) which is available on GitHub (https://github.com/3dgeo-heidelberg/helios), as a precompiled command line tool, and as Python package (pyhelios). HELIOS++ provides a high-fidelity framework for full 3D laser scanning simulations with multiple platforms and a flexible system to represent the scene. HELIOS++ models the beam divergence and supports the recording of the full waveform.</p><p>One important premise for the usefulness of VLS data is the use of an adequate 3D scene in the simulation. In this context, we conducted a study investigating point clouds simulated based on opaque voxel-based forest models computed from terrestrial laser scanning data using different voxel sizes. Coupling the LiDAR simulation with a database containing point clouds of single trees from terrestrial, UAV-borne and airborne acquisitions, allowed us to compare metrics derived from real and simulated data. Furthermore, by including the tree neighbourhood in the scene, we were able to consider occlusion effects between the trees.</p><p>We found that the voxel size is an important parameter, where values of e.g. 0.25 m lead to unrealistic occlusion effects of the mid- and understory, as only few gaps remain in the forest models through which the laser beam can pass. This results in fewer multiple returns, the vertical point distribution is shifted upwards, and tree metrics such as crown projection area and crown base height are estimated poorly. Smaller voxel sizes are therefore preferable, though the appropriate voxel size depends on the resolution of the input point cloud. With very small voxels, the voxel model may become too transparent. To achieve realistic simulations without the need for a high number of voxels we suggest variable downscaling of voxel cubes based on appropriate local metrics such as the plant area density. This approach decreases the computational requirements for the simulation, as fewer primitives are present in the scene. In our study, the use of such scaled voxels derived for a grid size of 0.25 m achieves equally and partly more reliable estimates of point cloud and tree metrics than regular voxels at fixed side lengths of 0.05 and 0.02 m.</p>

Author(s):  
A. Kumar ◽  
K. Anders ◽  
L Winiwarter ◽  
B. Höfle

<p><strong>Abstract.</strong> 3D point clouds acquired by laser scanning and other techniques are difficult to interpret because of their irregular structure. To make sense of this data and to allow for the derivation of useful information, a segmentation of the points in groups, units, or classes fit for the specific use case is required. In this paper, we present a non-end-to-end deep learning classifier for 3D point clouds using multiple sets of input features and compare it with an implementation of the state-of-the-art deep learning framework PointNet++. We first start by extracting features derived from the local normal vector (normal vectors, eigenvalues, and eigenvectors) from the point cloud, and study the result of classification for different local search radii. We extract additional features related to spatial point distribution and use them together with the normal vector-based features. We find that the classification accuracy improves by up to 33% as we include normal vector features with multiple search radii and features related to spatial point distribution. Our method achieves a mean Intersection over Union (mIoU) of 94% outperforming PointNet++’s Multi Scale Grouping by up to 12%. The study presents the importance of multiple search radii for different point cloud features for classification in an urban 3D point cloud scene acquired by terrestrial laser scanning.</p>


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4569
Author(s):  
Joan R. Rosell-Polo ◽  
Eduard Gregorio ◽  
Jordi Llorens

In this editorial, we provide an overview of the content of the special issue on “Terrestrial Laser Scanning”. The aim of this Special Issue is to bring together innovative developments and applications of terrestrial laser scanning (TLS), understood in a broad sense. Thus, although most contributions mainly involve the use of laser-based systems, other alternative technologies that also allow for obtaining 3D point clouds for the measurement and the 3D characterization of terrestrial targets, such as photogrammetry, are also considered. The 15 published contributions are mainly focused on the applications of TLS to the following three topics: TLS performance and point cloud processing, applications to civil engineering, and applications to plant characterization.


Author(s):  
J. Wang ◽  
R. Lindenbergh

Urban trees are an important component of our environment and ecosystem. Trees are able to combat climate change, clean the air and cool the streets and city. Tree inventory and monitoring are of great interest for biomass estimation and change monitoring. Conventionally, parameters of trees are manually measured and documented in situ, which is not efficient regarding labour and costs. Light Detection And Ranging (LiDAR) has become a well-established surveying technique for the acquisition of geo-spatial information. Combined with automatic point cloud processing techniques, this in principle enables the efficient extraction of geometric tree parameters. In recent years, studies have investigated to what extend it is possible to perform tree inventories using laser scanning point clouds. Give the availability of a city of Delft Open data tree repository, we are now able to present, validate and extend a workflow to automatically obtain tree data from tree location until tree species. The results of a test over 47 trees show that the proposed methods in the workflow are able to individual urban trees. The tree species classification results based on the extracted tree parameters show that only one tree was wrongly classified using k-means clustering.


Author(s):  
A. Murtiyos ◽  
P. Grussenmeyer ◽  
D. Suwardhi ◽  
W. A. Fadilah ◽  
H. A. Permana ◽  
...  

<p><strong>Abstract.</strong> 3D recording is an important procedure in the conservation of heritage sites. This past decade, a myriad of 3D sensors has appeared in the market with different advantages and disadvantages. Most notably, the laser scanning and photogrammetry methods have become some of the most used techniques in 3D recording. The integration of these different sensors is an interesting topic, one which will be discussed in this paper. Integration is an activity to combine two or more data with different characteristics to produce a 3D model with the best results. The discussion in this study includes the process of acquisition, processing, and analysis of the geometric quality from the results of the 3D recording process; starting with the acquisition method, registration and georeferencing process, up to the integration of laser scanning and photogrammetry 3D point clouds. The final result of the integration of the two point clouds is the 3D point cloud model that has become a single entity. Some detailed parts of the object of interest draw both geometric and textural information from photogrammetry, while laser scanning provided a point cloud depicting the overall overview of the building. The object used as our case study is Sari Temple, located in Special Region of Yogyakarta, Indonesia.</p>


Author(s):  
T. Partovi ◽  
M. Dähne ◽  
M. Maboudi ◽  
D. Krueger ◽  
M. Gerke

Abstract. Laser scanning systems have been developed to capture very high-resolution 3D point clouds and consequently acquire the object geometry. This object measuring technique has a high capacity for being utilized in a wide variety of applications such as indoor and outdoor modelling. The Terrestrial Laser Scanning (TLS) is used as an important data capturing measurement system to provide high quality point cloud from industrial or built-up environments. However, the static nature of the TLS and complexity of the industrial sites necessitate employing a complementary data capturing system e.g. cameras to fill the gaps in the TLS point cloud caused by occlusions which is very common in complex industrial areas. Moreover, employing images provide better radiometric and edge information. This motivated a joint project to develop a system for automatic and robust co-registration of TLS data and images directly, especially for complex objects. In this paper, the proposed methods for various components of this project including gap detection from point cloud, calculation of initial image capturing configuration, user interface and support system for the image capturing procedures, and co-registration between TLS point cloud and photogrammetric point cloud are presented. The primarily results on a complex industrial environment are promising.


Author(s):  
G. Stavropoulou ◽  
G. Tzovla ◽  
A. Georgopoulos

Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.


Author(s):  
N. Amiri ◽  
M. Heurich ◽  
P. Krzystek ◽  
A. K. Skidmore

The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37&amp;thinsp;points/m<sup>2</sup>. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with <i>L<sub>1</sub></i> regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4&amp;ndash;10&amp;thinsp;pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.


2019 ◽  
Vol 8 (10) ◽  
pp. 460
Author(s):  
Gracchi ◽  
Gigli ◽  
Noël ◽  
Jaboyedoff ◽  
Madiai ◽  
...  

In this paper, a MATLAB tool for the automatic detection of the best locations to install a wireless sensor network (WSN) is presented. The implemented code works directly on high-resolution 3D point clouds and aims to help in positioning sensors that are part of a network requiring inter-visibility, namely, a clear line of sight (LOS). Indeed, with the development of LiDAR and Structure from Motion technologies, there is an opportunity to directly use 3D point cloud data to perform visibility analyses. By doing so, many disadvantages of traditional modelling and analysis methods can be bypassed. The algorithm points out the optimal deployment of devices following mainly two criteria: inter-visibility (using a modified version of the Hidden Point Removal operator) and inter-distance. Furthermore, an option to prioritize significant areas is provided. The proposed method was first validated on an artificial 3D model, and then on a landslide 3D point cloud acquired from terrestrial laser scanning for the real positioning of an ultrawide-band WSN already installed in 2016. The comparison between collected data and data acquired by the WSN installed following traditional patterns has demonstrated its ability for the optimal deployment of a WSN requiring inter-visibility.


2020 ◽  
Vol 12 (17) ◽  
pp. 2748
Author(s):  
Arttu Julin ◽  
Matti Kurkela ◽  
Toni Rantanen ◽  
Juho-Pekka Virtanen ◽  
Mikko Maksimainen ◽  
...  

Terrestrial laser scanning (TLS) enables the efficient production of high-density colored 3D point clouds of real-world environments. An increasing number of applications from visual and automated interpretation to photorealistic 3D visualizations and experiences rely on accurate and reliable color information. However, insufficient attention has been put into evaluating the colorization quality of the 3D point clouds produced applying TLS. We have developed a method for the evaluation of the point cloud colorization quality of TLS systems with integrated imaging sensors. Our method assesses the capability of several tested systems to reproduce colors and details of a scene by measuring objective image quality metrics from 2D images that were rendered from 3D scanned test charts. The results suggest that the detected problems related to color reproduction (i.e., measured differences in color, white balance, and exposure) could be mitigated in data processing while the issues related to detail reproduction (i.e., measured sharpness and noise) are less in the control of a scanner user. Despite being commendable 3D measuring instruments, improving the colorization tools and workflows, and automated image processing pipelines would potentially increase not only the quality and production efficiency but also the applicability of colored 3D point clouds.


Author(s):  
M. R. Hess ◽  
V. Petrovic ◽  
F. Kuester

Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.


Sign in / Sign up

Export Citation Format

Share Document