Lithosphere velocity structure of the Khibiny and Lovozero plutons (Eastern part of the Baltic shield) from receiver functions

Author(s):  
Andrey Goev

<p>The Kola region of the Russian Arctic is located in the northeast of the Baltic Shield and is widely known for its unique geology in regards to the presence of massive Paleozoic intrusions. Multidisciplinary researches have been carried out to provide a comprehensive reconstruction of Khibiny and Lovozero plutons’ formation and their structure models The main source of geochronological data comes from isotope analysis of the arrays’ rocks. The amount of research focuses on the deep structure beneath the Khibiny pluton is scarce. To investigate velocity structure of the investigated region we used receiver function technique. Essence of the method is to analyze P-S (PRF) and S-P (SRF) converted waves form seismic boundaries along with their multiples. For the given research we used seismograms of the teleseismic events recorded by the Apatity (APA) and Lovozero (LVZ) broadband seismic stations since 2000. We selected 220 and 232 individual PRF;147 and 122 individual SRF for LVZ and APA station respectively. As both LVZ and APA are located relatively close to each other, we combined all 452 PRF to get a robust estimation of delay times of P410s and P660s phases. Our estimations of P410s and P660s phases are 43.6 and 67.6 sec respectively. Delay time between these phases is 24 sec that is close to “standard” according to the IASP91 model. The individual times of each phase are slightly less than predicted by IASP91 (by 0.4 sec) and could indicate an increase of velocities in the upper mantle, but it is not unusual for cratonic regions. Joint inversion of PRF and SRF was used to restore velocity sections for the depth up to 300 km. All models have shown a gradient increase in velocities in the earth's crust and sharp crust-mantle boundary at depth of 40 ± 1 km with a velocity jump from 3.9 to 4.4 km/s. The most prominent feature of the upper mantle structure is the presence of the low-velocity zone at a depth from 90 to 140 km. One of the possible explanation of this discontinuity could be the presence of deep fluids and the high porosity of this zone. This study was partially supported by the RFBR grant 18-05-70082 and the SRW theme No. АААА-А19-119022090015-6.</p>

2021 ◽  
Author(s):  
Hans Thybo ◽  
Nevra Bulut ◽  
Michael Grund ◽  
Alexandra Mauerberger ◽  
Anna Makushkina ◽  
...  

<p>The Baltic Shield is located in northern Europe. It was formed by amalgamation of a series of terranes and microcontinents during the Archean to the Paleoproterozoic, followed by significant modification in Neoproterozoic to Paleozoic time. The Baltic Shield includes a high mountain range, the Scandes, along its western North Atlantic coast, despite being a stable craton located far from any active plate boundary.</p> <p>The ScanArray international collaborative program has acquired broad band seismological data at 192 locations in the Baltic Shield during the period between 2012 and 2017. The main objective of the program is to provide seismological constraints on the structure of the lithospheric crust and mantle as well as the sublithospheric upper mantle. The new information will be applied to studies of how the lithospheric and deep structure affects observed fast topographic change and geological-tectonic evolution of the region. The recordings are of very high quality and are used for analysis by suite of methods, including P- and S-wave receiver functions for the crust and upper mantle, surface wave and ambient noise inversion for seismic velocity, body wave P- and S- wave tomography for upper mantle velocity structure, and shear-wave splitting measurements for obtaining bulk anisotropy of the upper and lower mantle. Here we provide a short overview of the data acquisition and initial analysis of the new data with focus on parameters that constrain the fast topographic change in the Scandes.</p> <p> </p>


1995 ◽  
Vol 32 (7) ◽  
pp. 938-951 ◽  
Author(s):  
John F. Cassidy

Three-component broadband data from the recently deployed Canadian National Seismograph Network provide a new opportunity to examine the structure of the crust and upper mantle beneath the Canadian landmass. Receiver function analysis is an ideal method to use with this data set, as it can provide constraints on the S-velocity structure beneath each station of this seismograph network. This analysis method is particularly useful in that it provides site-specific information (i.e., within 5–15 km of the station), low-velocity layers can be identified, and it is possible to examine structure to upper mantle depths. In this study, receiver functions were computed for each of the 19 stations that made up the seismograph network in June 1994. Five stations, sampling a variety of tectonic environments, including the Appalachian Orogen, the Canadian Shield, the Western Canadian Sedimentary Basin, and the Cascadia subduction zone, were chosen for detailed modelling. The results presented here are the first estimates of the S-velocity structure beneath these five stations. For those stations where comparisons can be made with seismic reflection and refraction results, there is excellent agreement. In eastern Canada, simple receiver functions and clear Moho Ps conversions at most stations indicate a relatively transparent crust and a Moho depth of 40–45 km. In northwestern Canada, Moho Ps phases indicate a crustal thickness of 33–38 km. Beneath Inuvik, Northwest Territories, the Moho is interpreted as two velocity steps separated in depth by 5 km, and an upper mantle low-velocity zone is near 47 km depth. In western Canada, the data indicate a mid-crustal low-velocity zone beneath Edmonton. The Moho of the subducting Juan de Fuca plate is interpreted at 52 km depth beneath southern Vancouver Island. Several stations exhibiting complex receiver functions warrant further study. They include stations at Schefferville, Quebec, in the Canadian Shield; Deer Lake, Newfoundland, on the boundary of the Grenville Province and the Appalachian Orogen; and Yellowknife, Northwest Territories, at the intersection of the Churchill and Slave provinces and the Western Plains.


1992 ◽  
Vol 29 (7) ◽  
pp. 1509-1529 ◽  
Author(s):  
Tianson Yuan ◽  
G. D. Spence ◽  
R. D. Hyndman

A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.


1971 ◽  
Vol 61 (5) ◽  
pp. 1441-1451
Author(s):  
R. D. Adams

abstract Early reflections of the phase P′P′ recorded at North American seismograph stations from nuclear explosions in Novaya Zemlya are used to examine the crust and upper mantle beneath a region of eastern Antarctica. Many reflections are observed from depths less than 120 km, indicating considerable inhomogeneity at these depths in the Earth. No regular horizons were found throughout the area, but some correlation was observed among reflections at closely-spaced stations, and, at many stations, reflections were observed from depths of between 60 and 80 km, corresponding to a likely upper boundary of the low-velocity channel. Deeper reflections were found at depths of near 420 and 650 km. The latter boundary was particularly well-observed and appears to be sharply defined at a depth that is constant to within a few kilometers. The boundary at 420 km is not so well defined by reflections of P′P′, but reflects well longer-period PP waves, arriving at wider angles of incidence. This boundary appears to be at least as pronounced, but not so sharp as that near 650 km. The deep structure beneath Antarctica presents no obvious difference from that beneath other continental areas.


2021 ◽  
Author(s):  
Metin Kahraman ◽  
Hans Thybo ◽  
Irina Artemieva ◽  
Alexey Shulgin ◽  
Alireza Malehmir ◽  
...  

<p>The Baltic Shield is located in the northern part of Europe, which formed by amalgamation of a series of terranes and microcontinents during the Archean to the Paleoproterozoic, followed by significant modification in Neoproterozoic to Paleozoic time. The Baltic Shield includes an up-to 2500 m high mountain range, the Scandes , along the western North Atlantic coast, despite being a stable craton located far from any active plate boundary.</p><p>We study a crustal scale seismic profile experiment in northern Scandinavia between 63<sup>o</sup>N and 71<sup>o</sup>N. Our Silverroad seismic profile extends perpendicular to the coastline around Lofoten and extends ~300km in a northwest direction across the shelf into the Atlantic Ocean and ~300km in a southeastern direction across the Baltic Shield. The seismic data were acquired with 5 explosive sources and 270 receivers onshore; 16 ocean bottom seismometers and air gun shooting from the vessel Hakon Mosby were used to collect both offshore and onshore.</p><p>We present the results from raytracing modelling of the seismic velocity structure along the profile. The outputs of this experiment will help to solve high onshore topography and anomalous and heterogeneous bathymetry of the continental lithosphere around the North Atlantic Ocean. The results show crustal thinning from the shield onto the continental shelf and further into the oceanic part. Of particular interest is the velocity below the high topography of the Scandes, which will be discussed in relation to isostatic equilibrium along the profile.</p>


2021 ◽  
Author(s):  
Matteo Scarponi ◽  
György Hetényi ◽  
Jaroslava Plomerová ◽  
Stefano Solarino

<p>We present results from a joint inversion study of new seismic and gravity data to constrain a 2D high-resolution image of one of the most prominent geophysical anomalies of the European Alps: the Ivrea geophysical body (IGB). Our work exploits both new data and multidisciplinary a priori constraints, to better resolve the shallow crustal structure in the Ivrea-Verbano zone (IVZ), where the IGB is known to reach anomalously shallow depths and partially outcrop at the surface.</p><p>A variety of previous studies, ranging from gravity surveys to vintage refraction seismics and recent local earthquake tomographies (Solarino et al. 2018, Diehl et al. 2009), provide comprehensive but spatially sparse information on the IGB structure, which we aim at investigating at higher resolution, along a linear profile crossing the IVZ. To this purpose, we deployed 10 broadband seismic stations (MOBNET pool, IG CAS Prague), 5 km spaced along a linear West-East profile, along Val Sesia and crossing Lago Maggiore. This network operated for 27 months and allowed us to produce a new database of ca. 1000 seismic high-quality receiver functions (RFs). In addition, we collected new gravity data in the IVZ, with a data coverage of 1 gravity point every 1-2 km along the seismic profile. The newly collected data was used to set up an inversion scheme, in which RFs and gravity anomalies are jointly used to constrain the shape and the physical property contrasts across the IGB interface.</p><p>We model the IGB as a single interface between far-field constraints, whose geometry is defined by the coordinates of four nodes which may vary in space, and  density and V<sub>S</sub> shear-wave velocity contrasts associated with the interface itself, varying independently. A Markov chain Monte Carlo (MCMC) sampling method with Metropolis-Hastings selection rule was implemented to efficiently explore the model space, directing the search towards better fitting areas.</p><p>For each model, we perform ray-tracing and RFs migration using the actual velocity structure both for migration and computation of synthetic RFs, to be compared with the observations via cross-correlation of the migration images. Similarly, forward gravity modelling for a 2D density distribution is implemented and the synthetic gravity anomaly is compared with the observations along the profile. The joint inversion performance is the product of these two misfits.</p><p>The inversion results show that the IGB reaches the shallowest depths in the western part of the profile, preferentially locating the IGB interface between 3 and 7 km depth over a horizontal distance of ca. 20 km (between Boccioleto and Civiasco, longitudes 8.1 and 8.3). Within this segment, the shallowest point reaches up to 1 km below sea level. The found density and velocity contrasts are in agreement with rock physics properties of various units observed in the field and characterized in earlier studies.</p>


2020 ◽  
Author(s):  
Wei Li ◽  
Yun Chen ◽  
Ping Tan ◽  
Xiaohui Yuan

<p>The Pamir plateau, located north of the western syntaxis of the India­–Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity zone(LVZ)s within the crust and upper mantle is revealed. The intermediate-depth seismic zone is enclosed in a mantle LVZ which extends upward to the crustal root and connects with a lower crustal LVZ in the northern Pamir. Just above it, another crustal LVZ is collocated with a Moho uplift. These results not only further confirm the deep subduction of the Asian lower continental crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and crustal deformation.</p>


Sign in / Sign up

Export Citation Format

Share Document