A large ensemble decadal prediction system with MPI-ESM

Author(s):  
Sebastian Brune ◽  
Vimal Koul ◽  
David Marcolino Nielsen ◽  
Laura Hövel ◽  
Holger Pohlmann ◽  
...  

<p>Current state-of-the-art decadal ensemble prediction systems are run with an ensemble size of 10 to 40 members, their retrospective forecasts of the past are used to assess the system's prediction skill. Here, we present an attempt for a large ensemble decadal prediction system for the time period 1960-today, with an ensemble size of 80 members, based on the low resolution version of the Max Planck Institute Earth system model (MPI-ESM-LR). The ensemble is forced with CMIP6 conditions and initialized every year in November through a weakly coupled assimilation using atmospheric reanalyses via nudging and observed oceanic temperature and salinity profiles via a 16-member ensemble Kalman filter. To generate ensemble members beyond 16, we use additional physical perturbations at stratospheric height. The analysis of our large ensemble prediction system presented here aims for answering two questions: (1) How does the ensemble mean deterministic prediction skill for global and North Atlantic key climate indices change with ensemble size? (2) How well may the 80-member ensemble serve as a basis for a robust statistical analysis of probabilities of extremes in the North Atlantic sector? Preliminary results for global and regional air surface temperature show that in terms of ensemble mean ACC and full ensemble CPRSS with reference data, the 80-member ensemble leads to similar prediction skill as the 16-member ensemble. This indicates that the additional ensemble members may lead to a better sampling of the distribution of model trajectories, paving the way for a more robust statistical probabilistic analysis.</p>

2019 ◽  
Vol 32 (3) ◽  
pp. 957-972 ◽  
Author(s):  
Takeshi Doi ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.


2019 ◽  
Vol 34 (6) ◽  
pp. 1675-1691 ◽  
Author(s):  
Yu Xia ◽  
Jing Chen ◽  
Jun Du ◽  
Xiefei Zhi ◽  
Jingzhuo Wang ◽  
...  

Abstract This study experimented with a unified scheme of stochastic physics and bias correction within a regional ensemble model [Global and Regional Assimilation and Prediction System–Regional Ensemble Prediction System (GRAPES-REPS)]. It is intended to improve ensemble prediction skill by reducing both random and systematic errors at the same time. Three experiments were performed on top of GRAPES-REPS. The first experiment adds only the stochastic physics. The second experiment adds only the bias correction scheme. The third experiment adds both the stochastic physics and bias correction. The experimental period is one month from 1 to 31 July 2015 over the China domain. Using 850-hPa temperature as an example, the study reveals the following: 1) the stochastic physics can effectively increase the ensemble spread, while the bias correction cannot. Therefore, ensemble averaging of the stochastic physics runs can reduce more random error than the bias correction runs. 2) Bias correction can significantly reduce systematic error, while the stochastic physics cannot. As a result, the bias correction greatly improved the quality of ensemble mean forecasts but the stochastic physics did not. 3) The unified scheme can greatly reduce both random and systematic errors at the same time and performed the best of the three experiments. These results were further confirmed by verification of the ensemble mean, spread, and probabilistic forecasts of many other atmospheric fields for both upper air and the surface, including precipitation. Based on this study, we recommend that operational numerical weather prediction centers adopt this unified scheme approach in ensemble models to achieve the best forecasts.


1998 ◽  
Vol 124 (550) ◽  
pp. 1935-1960 ◽  
Author(s):  
R. Buizza ◽  
T. Petroliagis ◽  
T. Palmer ◽  
J. Barkmeijer ◽  
M. Hamrud ◽  
...  

2010 ◽  
Vol 138 (10) ◽  
pp. 3886-3904 ◽  
Author(s):  
Mark Buehner ◽  
Ahmed Mahidjiba

Abstract This study examines the sensitivity of global ensemble forecasts to the use of different approaches for specifying both the initial ensemble mean and perturbations. The current operational ensemble prediction system of the Meteorological Service of Canada uses the ensemble Kalman filter (EnKF) to define both the ensemble mean and perturbations. To evaluate the impact of different approaches for obtaining the initial ensemble perturbations, the operational EnKF approach is compared with using either no initial perturbations or perturbations obtained using singular vectors (SVs). The SVs are computed using the (dry) total-energy norm with a 48-h optimization time interval. Random linear combinations of 60 SVs are computed for each of three regions. Next, the impact of replacing the initial ensemble mean, currently the EnKF ensemble mean analysis, with the higher-resolution operational four-dimensional variational data assimilation (4D-Var) analysis is evaluated. For this comparison, perturbations are provided by the EnKF. All experiments are performed over two-month periods during both the boreal summer and winter using a system very similar to the global ensemble prediction system that became operational on 10 July 2007. Relative to the operational configuration that relies on the EnKF, the use of SVs to compute initial perturbations produces small, but statistically significant differences in probabilistic forecast scores in favor of the EnKF both in the tropics and, for a limited set of forecast lead times, in the summer hemisphere extratropics, whereas the results are very similar in the winter hemisphere extratropics. Both approaches lead to significantly better ensemble forecasts than with no initial perturbations, though results are quite similar in the tropics when using SVs and no perturbations. The use of an initial-time norm that does not include information on analysis uncertainty and the lack of linearized moist processes in the calculation of the SVs are two factors that limit the quality of the resulting SV-based ensemble forecasts. Relative to the operational configuration, use of the 4D-Var analysis to specify the initial ensemble mean results in improved probabilistic forecast scores during the boreal summer period in the southern extratropics and tropics, but a near-neutral impact otherwise.


2006 ◽  
Vol 21 (2) ◽  
pp. 220-231 ◽  
Author(s):  
Richard W. Katz ◽  
Martin Ehrendorfer

Abstract The economic value of ensemble-based weather or climate forecasts is generally assessed by taking the ensembles at “face value.” That is, the forecast probability is estimated as the relative frequency of occurrence of an event among a limited number of ensemble members. Despite the economic value of probability forecasts being based on the concept of decision making under uncertainty, in effect, the decision maker is assumed to ignore the uncertainty in estimating this probability. Nevertheless, many users are certainly aware of the uncertainty inherent in a limited ensemble size. Bayesian prediction is used instead in this paper, incorporating such additional forecast uncertainty into the decision process. The face-value forecast probability estimator would correspond to a Bayesian analysis, with a prior distribution on the actual forecast probability only being appropriate if it were believed that the ensemble prediction system produces perfect forecasts. For the cost–loss decision-making model, the economic value of the face-value estimator can be negative for small ensemble sizes from a prediction system with a level of skill that is not sufficiently high. Further, this economic value has the counterintuitive property of sometimes decreasing as the ensemble size increases. For a more plausible form of prior distribution on the actual forecast probability, which could be viewed as a “recalibration” of face-value forecasts, the Bayesian estimator does not exhibit this unexpected behavior. Moreover, it is established that the effects of ensemble size on the reliability, skill, and economic value have been exaggerated by using the face-value, instead of the Bayesian, estimator.


2009 ◽  
Vol 137 (3) ◽  
pp. 893-911 ◽  
Author(s):  
Lizzie S. R. Froude

Abstract A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.


2016 ◽  
Vol 33 (11) ◽  
pp. 1297-1305
Author(s):  
Sijia Li ◽  
Yuan Wang ◽  
Huiling Yuan ◽  
Jinjie Song ◽  
Xin Xu

2014 ◽  
Vol 15 (4) ◽  
pp. 1708-1713 ◽  
Author(s):  
V. Fortin ◽  
M. Abaza ◽  
F. Anctil ◽  
R. Turcotte

Abstract When evaluating the reliability of an ensemble prediction system, it is common to compare the root-mean-square error of the ensemble mean to the average ensemble spread. While this is indeed good practice, two different and inconsistent methodologies have been used over the last few years in the meteorology and hydrology literature to compute the average ensemble spread. In some cases, the square root of average ensemble variance is used, and in other cases, the average of ensemble standard deviation is computed instead. The second option is incorrect. To avoid the perpetuation of practices that are not supported by probability theory, the correct equation for computing the average ensemble spread is obtained and the impact of using the wrong equation is illustrated.


2009 ◽  
Vol 137 (8) ◽  
pp. 2592-2604 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Ryota Sakai ◽  
Masayuki Kyoda ◽  
Takuya Komori ◽  
Takashi Kadowaki

Abstract The Japan Meteorological Agency (JMA) Typhoon Ensemble Prediction System (TEPS) and its performance are described. In February 2008, JMA started an operation of TEPS that was designed for providing skillful tropical cyclone (TC) track predictions in both deterministic and probabilistic ways. TEPS consists of 1 nonperturbed prediction and 10 perturbed predictions based on the lower-resolution version (TL319L60) of the JMA Global Spectral Model (GSM; TL959L60) and a global analysis for JMA/GSM. A singular vector method is employed to create initial perturbations. Focusing on TCs in the western North Pacific Ocean and the South China Sea (0°–60°N, 100°E–180°), TEPS runs 4 times a day, initiated at 0000, 0600, 1200, and 1800 UTC with a prediction range of 132 h. The verifications of TEPS during the quasi-operational period from May to December 2007 indicate that the ensemble mean track predictions statistically have better performance as compared with the control (nonperturbed) predictions: the error reduction in the 5-day predictions is 40 km on average. Moreover, it is found that the ensemble spread of tracks is an indicator of position error, indicating that TEPS will be useful in presenting confidence information on TC track predictions. For 2008 when TEPS was in operational use, however, it was also found that the ensemble mean was significantly worse than the deterministic model (JMA/GSM) out to 84 h.


Sign in / Sign up

Export Citation Format

Share Document