New age constraints on the Ouarzazate Group (Morocco): implications on the hypothesis of True Polar Wander during the Ediacaran

Author(s):  
Boris Robert ◽  
Fernando Corfu ◽  
Olivier Blein

<p>The Ediacaran (635-541 Ma) is the last geological period of the Precambrian during which major changes occurred in the superficial layers of the Earth (biosphere, cryosphere, oceans, atmosphere). The paleomagnetic data from the main continents of this epoch display very fast polar wander excursions, which seemed to occur simultaneously on several continents. Two main competing hypotheses have been proposed in the literature to explain these data: (1) very fast True Polar Wander episodes (TPW), which represent the global movement of the mantle and the crust with respect to the Earth's spin axis, or (2) perturbations of the Earth’s magnetic field. On geological timescales, the TPW is speed-limited to some degrees per million years while magnetic field changes could be much faster (degrees per kyrs). The velocity of the polar wander excursions of the Ediacaran is therefore a critical parameter to distinguish these two families of solutions. The volcanic rocks of the Ouarzazate group (575-545 Ma) in the Anti-Atlas belt recorded a large polar wander excursion from ~571 to ~565 Ma, which is also observed in Laurentia and Baltica at about the same time. Because the age uncertainties are too high, the existing SHRIMP U-Pb ages obtained on zircons are not precise enough to distinguish these two hypotheses. In this study, we bring new high-precision CA ID-TIMS ages on zircons from seven tuff layers that recorded the rapid paleomagnetic variations. Our results show, in most of the samples, a large spread in age, indicating either the presence of inherited zircons or strong Pb loss in some of the zircons. Four of the samples display a good consistency in the zircon ages, and could represent the age of the tuff emplacement. In this presentation, we will discuss the two hypotheses based on these new geochronological constraints.</p>

1994 ◽  
Vol 21 (2) ◽  
pp. 137-140 ◽  
Author(s):  
Giorgio Spada ◽  
Roberto Sabadini ◽  
Enzo Boschi

Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1112-1116 ◽  
Author(s):  
Zhiyu Yi ◽  
Yongqing Liu ◽  
Joseph G. Meert

Abstract A drastic environmental change occurred during the Middle to Late Jurassic as much of East Asia transitioned from a wet seasonal to an extremely arid climate. The timing, scope, and especially mechanism for this aridification are contentious. In this study, we report paleomagnetic data and ages from Jurassic volcanic rocks in North China and for the first time reveal a large-scale southward displacement of ∼25° for the Eastern Asian blocks (EABs) sometime between 174 ± 6 Ma and 157 ± 4 Ma. We suggest that the rapid motion documented by our paleomagnetic studies resulted from large-scale true polar wander (TPW). The TPW rotation displaced the EABs from the Northern Hemisphere humid-temperate belt into the subtropical/tropical arid zone. The resultant latitudinal motion coincided with a remarkable environmental change recorded over 10,000,000 km2 in East Asia between ca. 165 Ma and 155 Ma. We call the climate transition the “Great Jurassic East Asian Aridification” and argue that TPW-induced climatic shifts were also responsible for the demise of the Yanliao Biota and subsequent radiation of the Jehol Biota during the Late Jurassic and Early Cretaceous.


1997 ◽  
Vol 40 (4) ◽  
Author(s):  
O. Shields

Since the theory of plate tectonics was first proposed thirty years ago, some problems have arisen in its practical application. These call into question its fundamental assumptions of horizontal plate motion, hotspot fixity, true polar wander, Panthalassa, and the Earth’s constant size while leaving seafloor spreading and subduction intact. A rapidity expanding earth solves these problems and privides an alternative viewpoint worth reconsidering.


2021 ◽  
Author(s):  
Claire Nichols ◽  
Benjamin Weiss ◽  
Brenna Getzin ◽  
Harrison Schmitt ◽  
Annemarieke Beguin ◽  
...  

Abstract Paleomagnetic studies of Apollo samples indicate that the Moon generated a core dynamo lasting for at least 2 billion years. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well-constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years (Ga) ago as recorded by Apollo 17 mare basalts 75035 and 75055. These samples formed as part of basalt flows in the Taurus-Littrow valley that make up wall-rock within Camelot crater, now exposed at the rim of the crater. Using apparent layering in the parent boulder for 75055, we inferred its original paleohorizontal orientation on the lunar surface at the time of magnetization. We find that 75035 and 75055 record a mean paleointensity of ~50 µT. Furthermore, 75055 records a paleoinclination of 34 ± 11°. This inclination is consistent with, but does not require, a selenocentric axial dipole field geometry (i.e., a dipole in the center of the Moon and aligned along the spin axis). Additionally, although true polar wander is also not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies are consistent with our measured paleoinclination.


Sign in / Sign up

Export Citation Format

Share Document