Secondary new particle formation initiated by sulfuric acid-amine nucleation in Beijing

Author(s):  
Runlong Cai ◽  
Chao Yan ◽  
Jun Zheng ◽  
Lin Wang ◽  
Markku Kulmala ◽  
...  

<p>Secondary new particle formation is an important source of the number concentration of atmospheric aerosols. Despite relatively high coagulation sinks contributed by pre-existing aerosols, intensive new particle formation occurs frequently in polluted atmospheric environments such as in urban Beijing. Considering the measured concentrations of sulfuric acid and organic compounds, the contrast between the high coagulation sink and the frequent intensive NPF events in urban Beijing indicates an efficient nucleation mechanism. Based on long-term atmospheric measurements conducted at the campus of Beijing University of Chemical Technology, we show that sulfuric acid-amine nucleation is a governing mechanism to initiate new particle formation in urban Beijing. The molecular-level mechanism of sulfuric acid-amine nucleation, especially with low amine concentrations and high aerosol concentrations, are discussed. We present evidence for the existence of the missing amine molecules in the measured H<sub>2</sub>SO<sub>4</sub>-amine clusters. A neutral cluster needs to be ionized before it is detected by a mass spectrometer. Deprotonation or clustering with an additional reagent ion changes the stability of the original neutral cluster. Therefore, the amine molecules in neutral H<sub>2</sub>SO<sub>4</sub>-amine clusters may dissociate before detection. Combining measurements and cluster kinetic simulations, we show that although not directly detected, a considerable proportion of H<sub>2</sub>SO<sub>4</sub> monomers exist in the form of (H<sub>2</sub>SO<sub>4</sub>)<sub>1</sub>(amine)<sub>1</sub>, where the amine is most likely to be dimethylamine or trimethylamine. The evaporation rate of (H<sub>2</sub>SO<sub>4</sub>)<sub>1</sub>(amine)<sub>1</sub> is moderate and forming (H<sub>2</sub>SO<sub>4</sub>)<sub>1</sub>(amine)<sub>1</sub> is a critical step for H<sub>2</sub>SO<sub>4</sub>-amine nucleation. According to nucleation theory, (H<sub>2</sub>SO<sub>4</sub>)<sub>1</sub>(amine)<sub>1</sub> is the critical cluster at a low amine concentration, whereas H<sub>2</sub>SO<sub>4</sub>-amine nucleation may occur without a free energy barrier at a high amine concentration. The clustering between (H<sub>2</sub>SO<sub>4</sub>)<sub>1</sub>(amine)<sub>1</sub> and (H<sub>2</sub>SO<sub>4</sub>)<sub>n</sub>(amine)<sub>n</sub> is a major reaction pathway for the initial growth of H<sub>2</sub>SO<sub>4</sub>-amine clusters. These findings are supported by the measured H<sub>2</sub>SO<sub>4</sub> dimer concentration and its dependencies on amine concentrations and temperature in urban Beijing. Besides, the enhancement of cluster growth rate due to synergy between amines and ammonia are discussed.</p>

2013 ◽  
Vol 13 (2) ◽  
pp. 3419-3450 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
J. Zheng ◽  
...  

Abstract. The role of low-volatility organic vapors in atmospheric new particle formation has been studied based on a data set of 17 nucleation events observed during the CAREBeijing 2008 campaign. The particle formation rates show good correlations with sulfuric acid and organic vapors implying that both play an important role in the atmospheric new particle formation. High correlation coefficients are observed in all investigated nucleation mechanisms. The best fit (R = 0.73, slope = 1.1) between the observed and modelled particle formation rates is achieved with the homogenous nucleation theory of sulfuric acid (both homomolecularly and hetermolecularly) with separate coefficients in J=KSA1[H2SO4]2+KSA2[H2SO4][Org]. The contributions of the sulfuric acid and the organics involving terms have been 43% and 57%, respectively. In addition, the higher particle formation rates are observed on polluted nucleation days, indicating the organic vapors should be involved in the new particle formation process in the polluted urban environment of Beijing with high background aerosol loading.


2015 ◽  
Vol 15 (22) ◽  
pp. 33077-33119
Author(s):  
J. Kontkanen ◽  
E. Järvinen ◽  
H. E. Manninen ◽  
K. Lehtipalo ◽  
J. Kangasluoma ◽  
...  

Abstract. The concentrations of neutral and charged sub-3 nm clusters and their connection to new particle formation (NPF) were investigated during the PEGASOS campaign (7 June–9 July 2012) at the San Pietro Capofiume measurement station in the Po Valley, Italy. Continuous high concentrations of sub-3 nm clusters were detected during the measurement period, although the condensation sink was relatively high (median value 1.1 × 10-2 s-1). The median cluster concentrations were 2140 and 7980 cm-3 in the size bins of 1.5–1.8 nm and 1.8–3 nm, and the majority of them were electrically neutral. NPF events were observed during the measurement period frequently, on 86 % of the days. The median growth rates of clusters during the events were 4.3, 6.0 and 7.2 nm h-1 in the size ranges of 1.5–3, 3–7 and 7–20 nm. The median formation rate of 1.6 nm clusters was high, 45 cm-3 s-1, and it exceeded the median formation rate of 2 nm clusters by one order of magnitude. The ion-induced nucleation fraction was low; the median values were 0.7 % at 1.6 nm and 3.0 % at 2 nm. On NPF event days the neutral cluster concentration had a maximum around 9 a.m. (local winter time), which was absent on a non-event day. The increase in the cluster concentrations in the morning coincided with the increase in the boundary layer height. At the same time radiation and temperature increased and RH and condensation sink decreased. The concentration of neutral clusters was observed to have apositive correlation with sulfuric acid proxy, indicating the significance of sulfuric acid for the cluster formation in San Pietro Capofiume. The condensation sink had anegative correlation with the concentration of charged clusters but no clear relation to the neutral cluster concentration. This finding, together with back-trajectory analysis, suggests that the precursor vapors of the clusters and background aerosol particles, acting as their sink, have possibly originated from the same sources, including e.g. power plants and industrial areas in the Po Valley.


2016 ◽  
Vol 16 (4) ◽  
pp. 1919-1935 ◽  
Author(s):  
Jenni Kontkanen ◽  
Emma Järvinen ◽  
Hanna E. Manninen ◽  
Katrianne Lehtipalo ◽  
Juha Kangasluoma ◽  
...  

Abstract. The concentrations of neutral and charged sub-3nm clusters and their connection to new particle formation (NPF) were investigated during the PEGASOS campaign (7 June–9 July 2012) at the San Pietro Capofiume measurement station in the Po Valley, Italy. Continuous high concentrations of sub-3nm clusters were detected during the measurement period, although the condensation sink was relatively high (median value 1.1 × 10−2 s−1). The median cluster concentrations were 2140 and 7980 cm−3 in the size bins of 1.5–1.8 and 1.8–3 nm, and the majority of them were electrically neutral. NPF events were observed during the measurement period frequently, on 86 % of the days. The median growth rates of clusters during the events were 4.3, 6.0 and 7.2 nm h−1 in the size ranges of 1.5–3, 3–7 and 7–20 nm. The median formation rate of 1.6 nm clusters was high, 45 cm−3 s−1, and it exceeded the median formation rate of 2 nm clusters by 1 order of magnitude. The ion-induced nucleation fraction was low; the median values were 0.7 % at 1.6 nm and 3.0 % at 2 nm. On NPF event days the neutral cluster concentration had a maximum around 09:00 (local winter time), which was absent on a non-event day. The increase in the cluster concentrations in the morning coincided with the increase in the boundary layer height. At the same time radiation, temperature and SO2 concentration increased, and RH and condensation sink decreased. The concentrations of neutral and charged clusters were observed to have a positive correlation with sulfuric acid proxy, indicating the significance of sulfuric acid for the cluster formation in San Pietro Capofiume. The condensation sink had a negative correlation with the concentration of charged clusters but no clear relation to the neutral cluster concentration. This finding, together with back-trajectory analysis, suggests that the precursor vapors of the clusters and background aerosol particles, acting as their sink, have possibly originated from the same sources, including e.g., power plants and industrial areas in the Po Valley.


2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  

2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.


2018 ◽  
Vol 18 (3) ◽  
pp. 1835-1861 ◽  
Author(s):  
Johannes Größ ◽  
Amar Hamed ◽  
André Sonntag ◽  
Gerald Spindler ◽  
Hanna Elina Manninen ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2–20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.


2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Chao Yan ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
Lubna Dada ◽  
Dongsen Yang ◽  
...  

2017 ◽  
Vol 51 (15) ◽  
pp. 8422-8431 ◽  
Author(s):  
Hong-Bin Xie ◽  
Jonas Elm ◽  
Roope Halonen ◽  
Nanna Myllys ◽  
Theo Kurtén ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 845-863 ◽  
Author(s):  
Andreas Kürten ◽  
Chenxi Li ◽  
Federico Bianchi ◽  
Joachim Curtius ◽  
António Dias ◽  
...  

Abstract. A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3, and dimethylamine mixing ratio of ∼ 40 pptv, i.e., 1 × 109 cm−3).


Sign in / Sign up

Export Citation Format

Share Document