scholarly journals The importance of atmosphere-ocean-wave coupling in ensemble regional convective-scale forecasts of midlatitude cyclones

2021 ◽  
Author(s):  
Emanuele Silvio Gentile ◽  
Suzanne L. Gray ◽  
Janet F. Barlow ◽  
Huw W. Lewis

<p>Convective-scale ensemble prediction systems (EPS) are critical tools to accurately forecast damaging surface winds in the short range,  capturing the local details of their variability and providing guidance on the associated forecast uncertainty. Due to computational cost, operational convective-scale EPS are atmosphere-only models, which represent ocean and wave effects through sea-state independent parametrizations, and therefore do not account for the impact of an evolving ocean and wave state during the forecast. Benefits of integrating atmosphere, ocean, and wave feedbacks into a single coupled multimodel system have been shown by global-scale deterministic systems and EPS, and convective-scale deterministic systems. These benefits lead to the question of what are the corresponding benefits of coupling in convective-scale EPS. To address this question, we present the first convective-scale regional ensemble coupled system focused on the UK domain and surrounding seas (termed RECS-UK). We demonstrate the robustness of the impact of atmosphere-ocean-wave coupling and stochastic perturbations to model physics parametrizations on forecasts of extratropical cyclone Ciara and quantify the importance of these coupling impacts relative to initial condition error. </p><p>Coupling to the ocean leads to localised reductions in the 10-m wind speeds due to cooling of sea surface temperatures, which increase the stability in the surface layer. However, these localised impacts on coupling to ocean are not apparent when comparing the ensemble strike probabilities of exceeding a storm wind threshold (set to 20 m s<sup>-1</sup><sup>)</sup> for the atmosphere-ocean-coupled and control (atmosphere-only) ensembles. In contrast, coupling additionally to waves leads to substantial reductions in wind strike probability and consistently reduces, by up to 1 m s<sup>-1</sup><sup>,</sup> the ensemble forecast median and mean of Ciara’s wind speeds at all simulation hours during which Ciara is in the model domain. Each atmosphere-ocean-wave coupled ensemble member simulates the dynamical response of wind speeds to the forced young ocean waves, with maximum reductions in high wind speed regions. The largest 10-m wind speed spread from stochastic and initial condition perturbations is found away from the strongest wind speed regions of Ciara, but the impact of coupling to waves is more enhanced in these strongest wind speed regions, and is also comparable in size there with the largest sensitivity to stochastic and initial condition perturbations. The implications of this work are that the impacts on 10-m wind speed of coupling convective-scale atmospheric models to ocean and wave models can be robust across an ensemble and be of comparable size to those of initial condition and stochastic physics perturbations. However, convection-permitting atmosphere-ocean-wave coupled EPS should be assessed in different meteorological conditions and further tested on longer timescales prior to operational implementation. </p>

2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


Author(s):  
Diego Bruciaferri ◽  
Marina Tonani ◽  
Huw Lewis ◽  
John Siddorn ◽  
Andrew Saulter ◽  
...  

2021 ◽  
Author(s):  
Lotfi Aouf ◽  
Daniele Hauser ◽  
Stephane Law-Chune ◽  
Bertrand chapron ◽  
Alice Dalphinet ◽  
...  

<p>The Southern ocean is a complex ocean region with uncertainties related to surface wind forcing and fluxes exchanges at the air/sea interface. The improvement of wind wave generation in this ocean region is crucial for climate studies. With CFOSAT satellite mission, the SWIM instrument provides directional wave spectra for wavelengths from 70 to 500 m, which shed light on the role of correcting the wave direction and peak wave number of dominant wave trains in the wind-waves growth phase. This consequently induced a better energy transfer between waves and a significant bias reduction of wave height in the Southern Ocean (Aouf et al. 2020). The objective of this work is to extend the analysis of the impact of the assimilation of wave number components from SWIM wave partitions on the ocean/wave coupling. To this end, coupled simulations of the wave model MFWAM and the ocean model NEMO are performed during the southern winter period of 2019 (May-July). We have examined the MFWAM/NEMO coupling with and without the assimilation of the SWIM mean wave number components. Several coupling processes related to Stokes drift, momentum flux stress and wave breaking inducing turbulence in the ocean mixing layer have been analyzed. We also compared the coupled runs with a control run without wave forcing in order to evaluate the impact of the assimilation. The results of coupled simulations have been validated with satellite Sea Surface Temperature and available surface currents data over the southern ocean. We also investigated the impact of the assimilation during severe storms with unlimited fetch conditions.</p><p>Further discussions and conclusions will be commented in the final paper.</p><p>Aouf L., New directional wave satellite observations : Towards improved wave forecasting and climate description in Southern Ocean, Geophysical Research Letters, DOI: 10.1029/2020GL091187 (in production).</p><p> </p><div> <div> <div></div> <div>What do you want to do ?</div> New mail</div> </div><div><img></div>


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Viv Djanat Prasita ◽  
Lukman Aulia Zati ◽  
Supriyatno Widagdo

The wind and wave conditions in the waters of the Kalianget-Kangean cruise route in the west season are relatively high so that these winds and waves can have a dangerous impact on that cruise route. The aim of this research was to analyze the characteristics of wind speed and wave height over a 10 year period (2008-2017), as well as to evaluate the weekly patterns for three months (December 2017-February 2018). These time stamps represent the west season in waters at Kalianget-Kangean route, and to identify the impact of winds and wave on this path. The method used in this research is descriptive statistical analysis to obtain the mean and maximum values ​​of wind speed and wave height. Wind and wave patterns were analyzed by WRPlot and continued with mapping of wind and wave patterns in the waters of Kalianget-Kangean and its surroundings. The data used was obtained from the Meteorology, Climatology and Geophysics Agency. The results show wind and wave characteristics with two peaks formed regularly between 2008-2017, marking the west and east monsoons. In addition, the wind speed and wave height were generally below the danger threshold, ie <10 knots and <2 m, respectively. However, there are exceptions in the west season, especially at the peak in January, where the forces are strengthened with a steady blowing direction. The maximum wind speed reaches and wave height reaches 29 knots and 6.7 m, respectively. The weekly conditions for both parameters from December 2017 to February 2018 were relatively safe, for sailing. Moreover, January 23-29, 2018 featured extreme conditions estimated as dangerous for cruise due to the respective maximum values of 25 knots and 3.8 m recorded. The channel is comparably safe, except during the western season time in December, January, February, characterized by wind speeds and wave height exceeding 21 knots and 2.5 m, correspondingly.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2019 ◽  
Vol 148 (3) ◽  
pp. 1229-1249 ◽  
Author(s):  
Tobias Necker ◽  
Martin Weissmann ◽  
Yvonne Ruckstuhl ◽  
Jeffrey Anderson ◽  
Takemasa Miyoshi

Abstract State-of-the-art ensemble prediction systems usually provide ensembles with only 20–250 members for estimating the uncertainty of the forecast and its spatial and spatiotemporal covariance. Given that the degrees of freedom of atmospheric models are several magnitudes higher, the estimates are therefore substantially affected by sampling errors. For error covariances, spurious correlations lead to random sampling errors, but also a systematic overestimation of the correlation. A common approach to mitigate the impact of sampling errors for data assimilation is to localize correlations. However, this is a challenging task given that physical correlations in the atmosphere can extend over long distances. Besides data assimilation, sampling errors pose an issue for the investigation of spatiotemporal correlations using ensemble sensitivity analysis. Our study evaluates a statistical approach for correcting sampling errors. The applied sampling error correction is a lookup table–based approach and therefore computationally very efficient. We show that this approach substantially improves both the estimates of spatial correlations for data assimilation as well as spatiotemporal correlations for ensemble sensitivity analysis. The evaluation is performed using the first convective-scale 1000-member ensemble simulation for central Europe. Correlations of the 1000-member ensemble forecast serve as truth to assess the performance of the sampling error correction for smaller subsets of the full ensemble. The sampling error correction strongly reduced both random and systematic errors for all evaluated variables, ensemble sizes, and lead times.


2018 ◽  
Vol 18 (22) ◽  
pp. 16689-16711 ◽  
Author(s):  
Michael R. Giordano ◽  
Lars E. Kalnajs ◽  
J. Douglas Goetz ◽  
Anita M. Avery ◽  
Erin Katz ◽  
...  

Abstract. A fundamental understanding of the processes that control Antarctic aerosols is necessary in determining the aerosol impacts on climate-relevant processes from Antarctic ice cores to clouds. The first in situ observational online composition measurements by an aerosol mass spectrometer (AMS) of Antarctic aerosols were only recently performed during the Two-Season Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC). 2ODIAC was deployed to sea ice on the Ross Sea near McMurdo Station over two field seasons: austral spring–summer 2014 and winter–spring 2015. The results presented here focus on the overall trends in aerosol composition primarily as functions of air masses and local meteorological conditions. The results suggest that the impact of long-range air mass back trajectories on either the absolute or relative concentrations of the aerosol constituents measured by (and inferred from) an AMS at a coastal location is small relative to the impact of local meteorology. However, when the data are parsed by wind speed, two observations become clear. First, a critical wind speed is required to loft snow from the surface, which, in turn, increases particle counts in all measured size bins. Second, elevated wind speeds showed increased aerosol chloride and sodium. Further inspection of the AMS data shows that the increased chloride concentrations have more of a “fast-vaporizing” nature than chloride measured at low wind speed. Also presented are the Cl:Na ratios of snow samples and aerosol filter samples, as measured by ion chromatography, as well as non-chloride aerosol constituents measured by the AMS. Additionally, submicron aerosol iodine and bromine concentrations as functions of wind speed are also presented. The results presented here suggest that aerosol composition in coastal Antarctica is a strong function of wind speed and that the mechanisms determining aerosol composition are likely linked to blowing snow.


2011 ◽  
Vol 139 (2) ◽  
pp. 403-423 ◽  
Author(s):  
Benoît Vié ◽  
Olivier Nuissier ◽  
Véronique Ducrocq

Abstract This study assesses the impact of uncertainty on convective-scale initial conditions (ICs) and the uncertainty on lateral boundary conditions (LBCs) in cloud-resolving simulations with the Application of Research to Operations at Mesoscale (AROME) model. Special attention is paid to Mediterranean heavy precipitating events (HPEs). The goal is achieved by comparing high-resolution ensembles generated by different methods. First, an ensemble data assimilation technique has been used for assimilation of perturbed observations to generate different convective-scale ICs. Second, three ensembles used LBCs prescribed by the members of a global short-range ensemble prediction system (EPS). All ensembles obtained were then evaluated over 31- and/or 18-day periods, and on 2 specific case studies of HPEs. The ensembles are underdispersive, but both the probabilistic evaluation of their overall performance and the two case studies confirm that they can provide useful probabilistic information for the HPEs considered. The uncertainty on convective-scale ICs is shown to have an impact at short range (under 12 h), and it is strongly dependent on the synoptic-scale context. Specifically, given a marked circulation near the area of interest, the imposed LBCs rapidly overwhelm the initial differences, greatly reducing the spread of the ensemble. The uncertainty on LBCs shows an impact at longer range, as the spread in the coupling global ensemble increases, but it also depends on the synoptic-scale conditions and their predictability.


Sign in / Sign up

Export Citation Format

Share Document