scholarly journals Empirical statistical downscaling with EPISODES in an Alpine territory

2021 ◽  
Author(s):  
Theresa Schellander-Gorgas ◽  
Philip Lorenz ◽  
Frank Kreienkamp ◽  
Christoph Matulla

<p>EPISODES is an empirical statistical downscaling method which has been developed at the German national weather service, DWD (Kreienkamp et al. 2019). Its main aim is the downscaling of climate projections and climate predictions (seasonal to decadal) from global climate models (GCMs) to regional scale. A specific aim is to enhance ensembles based on dynamical downscaling and to improve robustness of deduced indices and statements.</p><p>The methodology involves two main steps, first, analogue downscaling in connection with linear regression and, second, a sort of weather generator. An important precondition is the availability of long-term observation data sets of high quality and resolution. The synthetic time-series resulting from EPISODES are multivariate and consistent in space and time. The data provide daily values for selected surface variables and can be delivered on grid or station representation. As such, they meet the main requirements for applications in climate impact research. Thanks to low computational needs, EPISODES can provide climate projections within short time. This enables early insights in the local effects of climate change as projected by GCMs and allows flexibility in the selection of ensembles.</p><p>While good results for EPISODES projections have already been achieved for Germany, the methodology needs to be adapted for the more complex terrain of the Alpine region. This is done in close collaboration of DWD and ZAMG (Austria). Among other tasks, the adaptions include a regionalization of the selection of relevant weather regimes, optimal fragmentation of the target region into climatic sub-zones and correction of precipitation class frequencies.</p><p>The presentation will refer to the progress of the adaption process. In doing so the quality of downscaled climate projections is shown for a test ensemble in comparison with existing projections of the Austrian ÖKS15 data set and EURO-CORDEX. </p><p>Reference: Kreienkamp, F., Paxian, A., Früh, B., Lorenz, P., Matulla, C.: Evaluation of the empirical–statistical downscaling method EPISODES. <em>Clim Dyn</em> <strong>52, </strong>991–1026 (2019). https://doi.org/10.1007/s00382-018-4276-2</p>

Author(s):  
Douglas Maraun

Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric processes and small-scale extreme events. To understand potential regional climatic changes, and to provide information for regional-scale impact modeling and adaptation planning, downscaling approaches have been developed. Regional climate change modeling, even though it is still a matter of basic research and questioned by many researchers, is urged to provide operational results. One major downscaling class is statistical downscaling, which exploits empirical relationships between larger-scale and local weather. The main statistical downscaling approaches are perfect prog (often referred to as empirical statistical downscaling), model output statistics (which is typically some sort of bias correction), and weather generators. Statistical downscaling complements or adds to dynamical downscaling and is useful to generate user-tailored local-scale information, or to efficiently generate regional scale information about mean climatic changes from large global climate model ensembles. Further research is needed to assess to what extent the assumptions underlying statistical downscaling are met in typical applications, and to develop new methods for generating spatially coherent projections, and for including process-understanding in bias correction. The increasing resolution of global climate models will improve the representation of downscaling predictors and will, therefore, make downscaling an even more feasible approach that will still be required to tailor information for users.


2017 ◽  
Vol 18 (9) ◽  
pp. 2385-2406 ◽  
Author(s):  
Yu-Kun Hou ◽  
Hua Chen ◽  
Chong-Yu Xu ◽  
Jie Chen ◽  
Sheng-Lian Guo

Abstract Statistical downscaling is useful for managing scale and resolution problems in outputs from global climate models (GCMs) for climate change impact studies. To improve downscaling of precipitation occurrence, this study proposes a revised regression-based statistical downscaling method that couples a support vector classifier (SVC) and first-order two-state Markov chain to generate the occurrence and a support vector regression (SVR) to simulate the amount. The proposed method is compared to the Statistical Downscaling Model (SDSM) for reproducing the temporal and quantitative distribution of observed precipitation using 10 meteorological indicators. Two types of calibration and validation methods were compared. The first method used sequential split sampling of calibration and validation periods, while the second used odd years for calibration and even years for validation. The proposed coupled approach outperformed the other methods in downscaling daily precipitation in all study periods using both calibration methods. Using odd years for calibration and even years for validation can reduce the influence of possible climate change–induced nonstationary data series. The study shows that it is necessary to combine different types of precipitation state classifiers with a method of regression or distribution to improve the performance of traditional statistical downscaling. These methods were applied to simulate future precipitation change from 2031 to 2100 with the CMIP5 climate variables. The results indicated increasing tendencies in both mean and maximum future precipitation predicted using all the downscaling methods evaluated. However, the proposed method is an at-site statistical downscaling method, and therefore this method will need to be modified for extension into a multisite domain.


2021 ◽  
Author(s):  
Theresa Schellander-Gorgas ◽  
Frank Kreienkamp ◽  
Philip Lorenz ◽  
Christoph Matulla ◽  
Janos Tordai

<p>EPISODES is an empirical statistical downscaling (ESD) method, which has been initiated and developed by the German Weather Service (DWD). Having resulted in good evaluation scores for Germany, the methodology it is also set-up and adapted for Austria at ZAMG and, hence, for an alpine territory with complex topography.</p><p>ESD methods are sparing regarding computational costs compared to dynamical downscaling models. Due to this advantage ESD can be applied in a short time frame and in a demand-based manner. It enables, e.g., processing ensembles of downscaled climate projections, which can be assessed either as stand-alone data set or to enhance ensembles based on dynamical methods. This helps improve the robustness of climatological statements for the purpose of climate impact research.</p><p>Preconditions for achieving high-quality results by EPISODES are long-term, temporally consistent observation data sets and a best possible realistic reproduction of relevant large-scale weather conditions by the GCMs. Given these requirements, EPISODES produces high-quality multivariate and spatially/temporally consistent synthetic time series on regular grids or station locations. The output is provided for daily time steps and, at maximum, for the resolution of underlying observation data.</p><p>The EPISODES method consists on mainly two steps: At first stage, univariate time series are produced on a coarse grid based on the analogue method and linear regression. It means that coarse scale atmospheric conditions of each single day as described by the GCM projections are assigned to a selection of at most similar daily weather situations of the observed past. From this selection new values are determined by linear regression for each day.</p><p>The second stage of the EPISODES method works like a weather generator. Short-term anomalies based on first stage results, on the one hand, and on observations, on the other hand, are matched selecting the most similar day for all used meteorological parameters and coarse grid points at the same time. Together with the high-resolution climatological background of observations and the climatological shift as described by GCM projections the short-term variability are combined to synthetic daily values for each target grid point. This approach provides the desired characteristics of the downscaled climate projections such as multivariability and spatio-temporal consistency.</p><p>Recent EPISODES evaluation results for daily precipitation and daily mean temperature are presented for the Austrian federal territory. Performance of the EPISODES ensemble will also be discussed in relation to existing ensembles based on dynamical methods which have already been widely used in climate impact studies in Austria: EURO-CORDEX and ÖKS15.</p>


Author(s):  
Kanawut Chattrairat ◽  
Waranyu Wongseree ◽  
Adisorn Leelasantitham

The climate change which is essential for daily life and especially agriculture has been forecasted by global climate models (GCMs) in the past few years. Statistical downscaling method (SD) has been used to improve the GCMs and enables the projection of local climate. Many pieces of research have studied climate change in case of individually seasonal temperature and precipitation for simulation; however, regional difference has not been included in the calculation. In this research, four fundamental SDs, linear regression (LR), Gaussian process (GP), support vector machine (SVM) and deep learning (DL), are studied for daily maximum temperature (TMAX), daily minimum temperature (TMIN), and precipitation (PRCP) based on the statistical relationship between the larger-scale climate predictors and predictands in Thailand. Additionally, the data sets of climate variables from over 45 weather stations overall in Thailand are used to calculate in this calculation. The statistical analysis of two performance criteria (correlation and root mean square error (RMSE)) shows that the DL provides the best performance for simulation. The TMAX and TMIN were calculated and gave a similar trend for all models. PRCP results found that in the North and South are adequate and poor performance due to high and low precipitation, respectively. We illustrate that DL is one of the suitable models for the climate change problem.


2019 ◽  
Author(s):  
Els Van Uytven ◽  
Jan De Niel ◽  
Patrick Willems

Abstract. In recent years many methods for statistical downscaling of the climate model outputs have been developed. Each statistical downscaling method (SDM) has strengths and limitations, but those are rarely evaluated. This paper proposes an approach to evaluate the skill of SDMs for the specific purpose of impact analysis in hydrology. The skill is evaluated by the verification of the general statistical downscaling assumptions, and by the perfect predictor experiment that includes hydrological impact analysis. The approach has been tested for an advanced weather typing based SDM and for impact analysis on river peak flows in a Belgian river catchment. Significant shortcomings of the selected SDM were uncovered such as biases in the frequency of weather types and non-stationarities in the extreme precipitation distribution per weather type. Such evaluation of SDMs becomes of use for future tailoring of SDM ensembles to end user needs.


2012 ◽  
Vol 9 (8) ◽  
pp. 9847-9884
Author(s):  
N. Guyennon ◽  
E. Romano ◽  
I. Portoghese ◽  
F. Salerno ◽  
S. Calmanti ◽  
...  

Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the stochastic statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to examine the relative benefits of each downscaling approach and their combination in making the GCM scenarios suitable for basin scale hydrological applications. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterized by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile transform. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modeled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the trend spatial heterogeneity and time evolution predicted by the GCM, although the comparison with observations resulted still underperforming. The best results were obtained through the combination of both DD and SD approaches.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 991-1026 ◽  
Author(s):  
Frank Kreienkamp ◽  
Andreas Paxian ◽  
Barbara Früh ◽  
Philip Lorenz ◽  
Christoph Matulla

Sign in / Sign up

Export Citation Format

Share Document